A Bending-Torsion Theory for Thin and Ultrathin Rods as a [math]-Limit of Atomistic Models

Bernd Schmidt, Jiří Zeman
{"title":"A Bending-Torsion Theory for Thin and Ultrathin Rods as a [math]-Limit of Atomistic Models","authors":"Bernd Schmidt, Jiří Zeman","doi":"10.1137/22m1517640","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 21, Issue 4, Page 1717-1745, December 2023. <br/> Abstract. The purpose of this note is to establish two continuum theories for the bending and torsion of inextensible rods as [math]-limits of three-dimensional atomistic models. In our derivation we study simultaneous limits of vanishing rod thickness [math] and interatomic distance [math]. First, we set up a novel theory for ultrathin rods composed of finitely many atomic fibers ([math]), which incorporates surface energy and new discrete terms in the limiting functional. This can be thought of as a contribution to the mechanical modelling of nanowires. Second, we treat the case where [math] and recover a nonlinear rod model—the modern version of Kirchhoff’s rod theory.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"171 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1517640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multiscale Modeling &Simulation, Volume 21, Issue 4, Page 1717-1745, December 2023.
Abstract. The purpose of this note is to establish two continuum theories for the bending and torsion of inextensible rods as [math]-limits of three-dimensional atomistic models. In our derivation we study simultaneous limits of vanishing rod thickness [math] and interatomic distance [math]. First, we set up a novel theory for ultrathin rods composed of finitely many atomic fibers ([math]), which incorporates surface energy and new discrete terms in the limiting functional. This can be thought of as a contribution to the mechanical modelling of nanowires. Second, we treat the case where [math] and recover a nonlinear rod model—the modern version of Kirchhoff’s rod theory.
作为原子模型[数学]极限的细棒和超细棒弯曲-扭转理论
多尺度建模与仿真》,第 21 卷第 4 期,第 1717-1745 页,2023 年 12 月。 摘要本论文的目的是为不可伸展杆的弯曲和扭转建立两个连续理论,作为三维原子模型的[数学]极限。在推导过程中,我们同时研究了棒厚度[数学]和原子间距离[数学]的消失极限。首先,我们为由有限多原子纤维([math])组成的超细棒建立了一个新理论,它在极限函数中加入了表面能和新的离散项。这可以看作是对纳米线力学建模的贡献。其次,我们处理了[math]的情况,并恢复了非线性棒模型--基尔霍夫棒理论的现代版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信