Analysis on the cone of discrete Radon measures

Dmitri Finkelshtein, Yuri Kondratiev, Peter Kuchling, Eugene Lytvynov, Maria Joao Oliveira
{"title":"Analysis on the cone of discrete Radon measures","authors":"Dmitri Finkelshtein, Yuri Kondratiev, Peter Kuchling, Eugene Lytvynov, Maria Joao Oliveira","doi":"arxiv-2312.03537","DOIUrl":null,"url":null,"abstract":"We study analysis on the cone of discrete Radon measures over a locally\ncompact Polish space $X$. We discuss probability measures on the cone and the\ncorresponding correlation measures and correlation functions on the sub-cone of\nfinite discrete Radon measures over $X$. For this, we consider on the cone an\nanalogue of the harmonic analysis on the configuration space developed in [12].\nWe also study elements of the difference calculus on the cone: we introduce\ndiscrete birth-and-death gradients and study the corresponding Dirichlet forms;\nfinally, we discuss a system of polynomial functions on the cone which satisfy\nthe binomial identity.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study analysis on the cone of discrete Radon measures over a locally compact Polish space $X$. We discuss probability measures on the cone and the corresponding correlation measures and correlation functions on the sub-cone of finite discrete Radon measures over $X$. For this, we consider on the cone an analogue of the harmonic analysis on the configuration space developed in [12]. We also study elements of the difference calculus on the cone: we introduce discrete birth-and-death gradients and study the corresponding Dirichlet forms; finally, we discuss a system of polynomial functions on the cone which satisfy the binomial identity.
离散拉顿量锥上的分析
我们研究局部紧凑波兰空间 $X$ 上离散 Radon 度量锥上的分析。我们讨论锥体上的概率度量以及与之对应的相关度量和相关函数。我们还研究了锥体上的差分微积分元素:我们引入了离散生死梯度并研究了相应的 Dirichlet 形式;最后,我们讨论了锥体上满足二项式同一性的多项式函数系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信