The three limits of the hydrostatic approximation

Ken Furukawa, Yoshikazu Giga, Matthias Hieber, Amru Hussein, Takahito Kashiwabara, Marc Wrona
{"title":"The three limits of the hydrostatic approximation","authors":"Ken Furukawa, Yoshikazu Giga, Matthias Hieber, Amru Hussein, Takahito Kashiwabara, Marc Wrona","doi":"arxiv-2312.03418","DOIUrl":null,"url":null,"abstract":"The primitive equations are derived from the $3D$-Navier-Stokes equations by\nthe hydrostatic approximation. Formally, assuming an $\\varepsilon$-thin domain\nand anisotropic viscosities with vertical viscosity\n$\\nu_z=\\mathcal{O}(\\varepsilon^\\gamma)$ where $\\gamma=2$, one obtains the\nprimitive equations with full viscosity as $\\varepsilon\\to 0$. Here, we take\ntwo more limit equations into consideration: For $\\gamma<2$ the\n$2D$-Navier-Stokes equations are obtained. For $\\gamma>2$ the primitive\nequations with only horizontal viscosity $-\\Delta_H$ as $\\varepsilon\\to 0$.\nThus, there are three possible limits of the hydrostatic approximation\ndepending on the assumption on the vertical viscosity. The latter convergence\nhas been proven recently by Li, Titi, and Yuan using energy estimates. Here, we\nconsider more generally $\\nu_z=\\varepsilon^2 \\delta$ and show how maximal\nregularity methods and quadratic inequalities can be an efficient approach to\nthe same end for $\\varepsilon,\\delta\\to 0$. The flexibility of our methods is\nalso illustrated by the convergence for $\\delta\\to \\infty$ and $\\varepsilon\\to\n0$ to the $2D$-Navier-Stokes equations.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primitive equations are derived from the $3D$-Navier-Stokes equations by the hydrostatic approximation. Formally, assuming an $\varepsilon$-thin domain and anisotropic viscosities with vertical viscosity $\nu_z=\mathcal{O}(\varepsilon^\gamma)$ where $\gamma=2$, one obtains the primitive equations with full viscosity as $\varepsilon\to 0$. Here, we take two more limit equations into consideration: For $\gamma<2$ the $2D$-Navier-Stokes equations are obtained. For $\gamma>2$ the primitive equations with only horizontal viscosity $-\Delta_H$ as $\varepsilon\to 0$. Thus, there are three possible limits of the hydrostatic approximation depending on the assumption on the vertical viscosity. The latter convergence has been proven recently by Li, Titi, and Yuan using energy estimates. Here, we consider more generally $\nu_z=\varepsilon^2 \delta$ and show how maximal regularity methods and quadratic inequalities can be an efficient approach to the same end for $\varepsilon,\delta\to 0$. The flexibility of our methods is also illustrated by the convergence for $\delta\to \infty$ and $\varepsilon\to 0$ to the $2D$-Navier-Stokes equations.
流体静力学近似的三个极限
原始方程是通过流体静力学近似从 3D$ 纳维尔-斯托克斯方程导出的。形式上,假设有一个 $\varepsilon$ 薄的域和各向异性的粘度,垂直粘度为$\nu_z=\mathcal{O}(\varepsilon^\gamma)$(其中$\gamma=2$),那么当 $\varepsilon\ 到 0$ 时,我们就得到了具有全粘度的原始方程。在这里,我们还要考虑两个极限方程:对于 $\gamma2$ ,当 $\varepsilon\to 0$ 时,原始方程只有水平粘度 $-\Delta_H$。因此,静力学近似有三种可能的极限,取决于对垂直粘度的假设。最近,Li、Titi 和 Yuan 利用能量估计证明了后一种收敛性。在这里,我们更广泛地考虑了 $\nu_z=\varepsilon^2 \delta$,并展示了最大正则方法和二次不等式是如何有效地实现 $\varepsilon,\delta\to 0$ 的。我们方法的灵活性还体现在$\delta\to \infty$和$\varepsilon\to0$对2D$-Navier-Stokes方程的收敛性上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信