Vertex algebras from divisors on Calabi-Yau threefolds

Dylan Butson
{"title":"Vertex algebras from divisors on Calabi-Yau threefolds","authors":"Dylan Butson","doi":"arxiv-2312.03648","DOIUrl":null,"url":null,"abstract":"We construct vertex algebras $\\mathbb{V}(Y,S)$ from divisors $S$ on toric\nCalabi-Yau threefolds $Y$, satisfying conjectures of Gaiotto-Rapcak and\nFeigin-Gukov, as the kernel of screening operators on lattice vertex algebras\ndetermined by the GKM graph of $Y$ and a filtration on $\\mathcal{O}_S$. We\nprove that there are representations of $\\mathbb{V}(Y,S)$ on the homology\ngroups of various moduli spaces of coherent sheaves on $Y$ supported on $S$\nconstructed in a companion paper with Rapcak, defined by certain Hecke\nmodifications of these sheaves along points and curve classes in the divisor\n$S$. This generalizes the common mathematical formulation of a conjecture of\nAlday-Gaiotto-Tachikawa, the special case in which $Y=\\mathbb{C}^3$ and\n$S=r[\\mathbb{C}^2]$, to toric threefolds and divisors as proposed by\nGaiotto-Rapcak. We outline an approach to the general conjecture and prove many\nspecial cases and partial results using tools developed in the companion paper,\nfollowing the proof of the original conjecture by Schiffmann-Vasserot and its\ngeneralization to divisors in $\\mathbb{C}^3$ by Rapcak-Soibelman-Yang-Zhao. The vertex algebras $\\mathbb{V}(Y,S)$ conjecturally include $W$-superalgebras\n$ W_{f_0,f_1}^\\kappa(\\mathfrak{gl}_{m|n})$ and genus zero class $\\mathcal{S}$\nchiral algebras $\\mathbb{V}^{\\mathcal{S}}_{\\text{Gl}_m;f_1,...,f_k}$, each for\ngeneral nilpotents $f_i$. By definition, this implies the existence of a family\nof compatible free field realizations of these vertex algebras, relevant to\ntheir parabolic induction and inverse quantum Hamiltonian reduction. We prove\nthese conjectures in the examples of lowest non-trivial rank for each case, and\noutline the proof in general for some cases.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct vertex algebras $\mathbb{V}(Y,S)$ from divisors $S$ on toric Calabi-Yau threefolds $Y$, satisfying conjectures of Gaiotto-Rapcak and Feigin-Gukov, as the kernel of screening operators on lattice vertex algebras determined by the GKM graph of $Y$ and a filtration on $\mathcal{O}_S$. We prove that there are representations of $\mathbb{V}(Y,S)$ on the homology groups of various moduli spaces of coherent sheaves on $Y$ supported on $S$ constructed in a companion paper with Rapcak, defined by certain Hecke modifications of these sheaves along points and curve classes in the divisor $S$. This generalizes the common mathematical formulation of a conjecture of Alday-Gaiotto-Tachikawa, the special case in which $Y=\mathbb{C}^3$ and $S=r[\mathbb{C}^2]$, to toric threefolds and divisors as proposed by Gaiotto-Rapcak. We outline an approach to the general conjecture and prove many special cases and partial results using tools developed in the companion paper, following the proof of the original conjecture by Schiffmann-Vasserot and its generalization to divisors in $\mathbb{C}^3$ by Rapcak-Soibelman-Yang-Zhao. The vertex algebras $\mathbb{V}(Y,S)$ conjecturally include $W$-superalgebras $ W_{f_0,f_1}^\kappa(\mathfrak{gl}_{m|n})$ and genus zero class $\mathcal{S}$ chiral algebras $\mathbb{V}^{\mathcal{S}}_{\text{Gl}_m;f_1,...,f_k}$, each for general nilpotents $f_i$. By definition, this implies the existence of a family of compatible free field realizations of these vertex algebras, relevant to their parabolic induction and inverse quantum Hamiltonian reduction. We prove these conjectures in the examples of lowest non-trivial rank for each case, and outline the proof in general for some cases.
来自 Calabi-Yau 三折上除数的顶点代数
我们从环状卡拉比-约三围 $Y$ 上的分维 $S$ 构造了顶点代数 $\mathbb{V}(Y,S)$,满足盖奥托-拉普卡克(Gaiotto-Rapcak)和费金-古可夫(Feigin-Gukov)的猜想,作为由 $Y$ 的 GKM 图和 $\mathcal{O}_S$ 上的滤波决定的晶格顶点代数上的筛选算子的内核。我们证明,在与拉普卡克合作的一篇论文中构建的$S$上支持$Y$的相干卷的各种模空间的同调群上,存在着$\mathbb{V}(Y,S)$的表征,这些表征是由这些卷沿分部$S$中的点和曲线类的某些赫克修正定义的。这就把阿尔代-盖奥托-立川猜想的常见数学表述,即$Y=\mathbb{C}^3$和$S=r[\mathbb{C}^2]$的特殊情况,推广到了盖奥托-拉普卡克提出的环状三褶和除数。我们概述了实现一般猜想的方法,并使用同伴论文中开发的工具证明了许多特殊情况和部分结果,这是继 Schiffmann-Vasserot 对原始猜想的证明,以及 Rapcak-Soibelman-Yang-Zhao 对 $\mathbb{C}^3$ 中的除数的概括之后的又一次证明。顶点代数 $\mathbb{V}(Y,S)$ 猜想包括 $W$-superalgebras$ W_{f_0,f_1}^\kappa(\mathfrak{gl}_{m|n})$ 和零属类 $\mathcal{S}$chiral 代数 $\mathbb{V}^{\mathcal{S}}_{text{Gl}_m;f_1,...,f_k}$ 。...,f_k}$,每一个都包含零potents $f_i$。根据定义,这意味着存在这些顶点代数的兼容自由场实化族,这与它们的抛物线归纳和逆量子哈密顿还原有关。我们在每种情况下的最低非琐秩的例子中证明了这些猜想,并概述了某些情况下的一般证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信