Exploring Lee-Yang and Fisher Zeros in the 2D Ising Model through Multi-Point Padé Approximants

Simran Singh, Massimo Cipressi, Francesco Di Renzo
{"title":"Exploring Lee-Yang and Fisher Zeros in the 2D Ising Model through Multi-Point Padé Approximants","authors":"Simran Singh, Massimo Cipressi, Francesco Di Renzo","doi":"arxiv-2312.03178","DOIUrl":null,"url":null,"abstract":"We present a numerical calculation of the Lee-Yang and Fisher zeros of the 2D\nIsing model using multi-point Pad\\'{e} approximants. We perform simulations for\nthe 2D Ising model with ferromagnetic couplings both in the absence and in the\npresence of a magnetic field using a cluster spin-flip algorithm. We show that\nit is possible to extract genuine signature of Lee Yang and Fisher zeros of the\ntheory through the poles of magnetization and specific heat, using multi-point\nPad\\'{e} method. We extract the poles of magnetization using Pad\\'{e}\napproximants and compare their scaling with known results. We verify the circle\ntheorem associated to the well known behaviour of Lee Yang zeros. We present\nour finite volume scaling analysis of the zeros done at $T=T_c$ for a few\nlattice sizes, extracting to a very good precision the (combination of)\ncritical exponents $\\beta \\delta$. The computation at the critical temperature\nis performed after the latter has been determined via the study of Fisher\nzeros, thus extracting both $\\beta_c$ and the critical exponent $\\nu$. Results\nalready exist for extracting the critical exponents for the Ising model in 2\nand 3 dimensions making use of Fisher and Lee Yang zeros. In this work,\nmulti-point Pad\\'{e} is shown to be competitive with this respect and thus a\npowerful tool to study phase transitions.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a numerical calculation of the Lee-Yang and Fisher zeros of the 2D Ising model using multi-point Pad\'{e} approximants. We perform simulations for the 2D Ising model with ferromagnetic couplings both in the absence and in the presence of a magnetic field using a cluster spin-flip algorithm. We show that it is possible to extract genuine signature of Lee Yang and Fisher zeros of the theory through the poles of magnetization and specific heat, using multi-point Pad\'{e} method. We extract the poles of magnetization using Pad\'{e} approximants and compare their scaling with known results. We verify the circle theorem associated to the well known behaviour of Lee Yang zeros. We present our finite volume scaling analysis of the zeros done at $T=T_c$ for a few lattice sizes, extracting to a very good precision the (combination of) critical exponents $\beta \delta$. The computation at the critical temperature is performed after the latter has been determined via the study of Fisher zeros, thus extracting both $\beta_c$ and the critical exponent $\nu$. Results already exist for extracting the critical exponents for the Ising model in 2 and 3 dimensions making use of Fisher and Lee Yang zeros. In this work, multi-point Pad\'{e} is shown to be competitive with this respect and thus a powerful tool to study phase transitions.
通过多点帕代近似值探索二维伊辛模型中的李-杨和费雪零点
我们使用多点 Pad\'{e} 近似值对二维伊辛模型的李-杨和费雪零点进行了数值计算。我们使用簇自旋翻转算法,在没有磁场和有磁场的情况下,对具有铁磁耦合的二维伊辛模型进行了模拟。我们证明,通过磁化极点和比热,使用多点Pad/'{e}方法可以提取出李阳理论和费雪理论零点的真正特征。我们使用 Pad\'{e} 近似值提取磁化极点,并将其缩放与已知结果进行比较。我们验证了与众所周知的李阳零点行为相关的环形定理。我们介绍了在 $T=T_c$ 时对几种晶格尺寸的零点进行的有限体积缩放分析,提取了非常精确的(组合)临界指数 $\beta \delta$。临界温度的计算是在通过费舍尔泽罗研究确定了临界温度之后进行的,从而同时提取了 $\beta_c$ 和临界指数 $\nu$。利用费雪零点和李阳零点提取伊辛模型 2 维和 3 维临界指数的结果已经存在。在这项工作中,多点 Pad\'{e} 被证明在这方面具有竞争力,因而是研究相变的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信