Risk analysis of autonomous vehicle test scenarios using a novel analytic hierarchy process method

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shengpeng Zhang, Taeoh Tak
{"title":"Risk analysis of autonomous vehicle test scenarios using a novel analytic hierarchy process method","authors":"Shengpeng Zhang,&nbsp;Taeoh Tak","doi":"10.1049/itr2.12466","DOIUrl":null,"url":null,"abstract":"<p>Scenario-based test methods are employed to assess the safety and performance of autonomous vehicles. The analytic hierarchy process (AHP) method is a common assessment method for determining the criticality of test scenarios. However, the AHP method is subjective and less reproducible when performed by different persons, as the elements of pairwise comparison values that are directly linked to the outcome must be assigned by the person involved. This paper proposes a novel AHP method that automatically generates pairwise comparison values by optimizing the correlation between performance metrics and risk of test scenarios by simulation. Performance metrics are defined as the minimum relative distances and corresponding relative velocities between vehicles, and the risk of the test scenario is determined by the pairwise comparison values of AHP. The novel AHP method was evaluated using a cut-in scenario. The results showed that the minimum relative distance and the risk determined by the novel AHP method achieved a better correlation coefficient of −0.96, which is better than the conventional AHP of −0.828 and Fuzzy AHP of −0.824. These results suggest that the criticality of the test scenarios determined by the novel AHP method can more accurately reflect real-world driving environments.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12466","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12466","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Scenario-based test methods are employed to assess the safety and performance of autonomous vehicles. The analytic hierarchy process (AHP) method is a common assessment method for determining the criticality of test scenarios. However, the AHP method is subjective and less reproducible when performed by different persons, as the elements of pairwise comparison values that are directly linked to the outcome must be assigned by the person involved. This paper proposes a novel AHP method that automatically generates pairwise comparison values by optimizing the correlation between performance metrics and risk of test scenarios by simulation. Performance metrics are defined as the minimum relative distances and corresponding relative velocities between vehicles, and the risk of the test scenario is determined by the pairwise comparison values of AHP. The novel AHP method was evaluated using a cut-in scenario. The results showed that the minimum relative distance and the risk determined by the novel AHP method achieved a better correlation coefficient of −0.96, which is better than the conventional AHP of −0.828 and Fuzzy AHP of −0.824. These results suggest that the criticality of the test scenarios determined by the novel AHP method can more accurately reflect real-world driving environments.

Abstract Image

Abstract Image

使用新型层次分析法对自动驾驶汽车测试场景进行风险分析
基于场景的测试方法被用来评估自动驾驶汽车的安全性和性能。层次分析法(AHP)是确定测试场景关键性的常用评估方法。然而,由于与结果直接相关的成对比较值要素必须由相关人员分配,因此 AHP 方法在由不同人员执行时主观性较强,可重复性较低。本文提出了一种新颖的 AHP 方法,通过模拟优化性能指标与测试方案风险之间的相关性,自动生成成对比较值。性能指标定义为车辆之间的最小相对距离和相应的相对速度,测试场景的风险由 AHP 的成对比较值决定。新颖的 AHP 方法使用切入情景进行了评估。结果表明,新型 AHP 方法确定的最小相对距离和风险的相关系数为-0.96,优于传统 AHP 的-0.828 和模糊 AHP 的-0.824。这些结果表明,新型 AHP 方法确定的测试场景的临界度能够更准确地反映真实世界的驾驶环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信