{"title":"A Sensing Platform Based on Ni/Mn Bimetal-Organic Framework for Electrochemical Detection of Osimertinib","authors":"Zahra Mirzaei Karazan, Mahmoud Roushani","doi":"10.1007/s12678-023-00857-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the synthesis and properties of a selective electrochemical sensor for the determination of osimertinib (OSIM) as an anticancer drug using the bimetal-organic framework (MOF) were reported. Herein, MOF based on nickel/manganese (Ni/Mn-MOFs) was successfully created using the solvothermal method and applied for the amperometric detection of OSIM. Then, Ni/Mn-MOF was analyzed through a field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). The electrocatalytic performance of the introduced MOF is used in the electrochemical determination of the OSIM drug. The synthesized MOF leads to a noticeable improvement in the electrochemical performance which is ascribed to the many electrocatalytic sites, wide electrode–electrolyte contact area, and excellent electrical conductivity. This is the first study on the use of Ni/Mn-MOF to detect of OSIM. The Ni/Mn-MOF modified glassy carbon electrode (Ni/Mn-MOF/GCE) exhibited a good linear range from 0.5 to 800 μM and 800 to 1800 μM with a low detection limit (LOD) as 0.16 μM. In addition, the proposed sensor possessed good anti-interference properties, repeatability, stability, and reproducibility. The mentioned substrate to detect OSIM in the samples of blood serum was successfully applied. This research displays that MOFs are reliable materials for designing effective electrochemical sensors to detect drugs easily. The existing research results provide insights into the promotion and development of the bimetal-organic framework in the field of electrochemical applications and promising for usage in other electrochemical studies.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 1","pages":"110 - 119"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00857-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the synthesis and properties of a selective electrochemical sensor for the determination of osimertinib (OSIM) as an anticancer drug using the bimetal-organic framework (MOF) were reported. Herein, MOF based on nickel/manganese (Ni/Mn-MOFs) was successfully created using the solvothermal method and applied for the amperometric detection of OSIM. Then, Ni/Mn-MOF was analyzed through a field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). The electrocatalytic performance of the introduced MOF is used in the electrochemical determination of the OSIM drug. The synthesized MOF leads to a noticeable improvement in the electrochemical performance which is ascribed to the many electrocatalytic sites, wide electrode–electrolyte contact area, and excellent electrical conductivity. This is the first study on the use of Ni/Mn-MOF to detect of OSIM. The Ni/Mn-MOF modified glassy carbon electrode (Ni/Mn-MOF/GCE) exhibited a good linear range from 0.5 to 800 μM and 800 to 1800 μM with a low detection limit (LOD) as 0.16 μM. In addition, the proposed sensor possessed good anti-interference properties, repeatability, stability, and reproducibility. The mentioned substrate to detect OSIM in the samples of blood serum was successfully applied. This research displays that MOFs are reliable materials for designing effective electrochemical sensors to detect drugs easily. The existing research results provide insights into the promotion and development of the bimetal-organic framework in the field of electrochemical applications and promising for usage in other electrochemical studies.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.