Generating synthetic data in digital pathology through diffusion models: a multifaceted approach to evaluation

Matteo Pozzi, Shahryar Noei, Erich Robbi, Luca Cima, Monica Moroni, Enrico Munari, Evelin Torresani, Giuseppe Jurman
{"title":"Generating synthetic data in digital pathology through diffusion models: a multifaceted approach to evaluation","authors":"Matteo Pozzi, Shahryar Noei, Erich Robbi, Luca Cima, Monica Moroni, Enrico Munari, Evelin Torresani, Giuseppe Jurman","doi":"10.1101/2023.11.21.23298808","DOIUrl":null,"url":null,"abstract":"Synthetic data has recently risen as a new precious item in the computational pathologist’s toolbox, supporting several tasks such as helping with data scarcity or augmenting training set in deep learning. Nonetheless, the use of such novel resources requires a carefully planned construction and evaluation, to avoid pitfalls such as the generation of clinically meaningless artifacts.","PeriodicalId":501528,"journal":{"name":"medRxiv - Pathology","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.21.23298808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic data has recently risen as a new precious item in the computational pathologist’s toolbox, supporting several tasks such as helping with data scarcity or augmenting training set in deep learning. Nonetheless, the use of such novel resources requires a carefully planned construction and evaluation, to avoid pitfalls such as the generation of clinically meaningless artifacts.
通过扩散模型在数字病理学中生成合成数据:一种多方面的评估方法
合成数据最近已经成为计算病理学家工具箱中的一个新的宝贵项目,支持一些任务,如帮助解决数据短缺或增加深度学习的训练集。尽管如此,这种新资源的使用需要仔细规划构建和评估,以避免诸如产生临床无意义的伪影之类的陷阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信