Z-Code++: A Pre-trained Language Model Optimized for Abstractive Summarization

Pengcheng He, Baolin Peng, Liyang Lu, Song Wang, Jie Mei, Yang Liu, Ruochen Xu, Hany Hassan Awadalla, Yu Shi, Chenguang Zhu, Wayne Xiong, Michael Zeng, Jianfeng Gao, Xuedong Huang
{"title":"Z-Code++: A Pre-trained Language Model Optimized for Abstractive Summarization","authors":"Pengcheng He, Baolin Peng, Liyang Lu, Song Wang, Jie Mei, Yang Liu, Ruochen Xu, Hany Hassan Awadalla, Yu Shi, Chenguang Zhu, Wayne Xiong, Michael Zeng, Jianfeng Gao, Xuedong Huang","doi":"arxiv-2208.09770","DOIUrl":null,"url":null,"abstract":"This paper presents Z-Code++, a new pre-trained language model optimized for\nabstractive text summarization. The model extends the state of the art\nencoder-decoder model using three techniques. First, we use a two-phase\npre-training process to improve model's performance on low-resource\nsummarization tasks. The model is first pre-trained using text corpora for\nlanguage understanding, and then is continually pre-trained on summarization\ncorpora for grounded text generation. Second, we replace self-attention layers\nin the encoder with disentangled attention layers, where each word is\nrepresented using two vectors that encode its content and position,\nrespectively. Third, we use fusion-in-encoder, a simple yet effective method of\nencoding long sequences in a hierarchical manner. Z-Code++ creates new state of\nthe art on 9 out of 13 text summarization tasks across 5 languages. Our model\nis parameter-efficient in that it outperforms the 600x larger PaLM-540B on\nXSum, and the finetuned 200x larger GPT3-175B on SAMSum. In zero-shot and\nfew-shot settings, our model substantially outperforms the competing models.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2208.09770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents Z-Code++, a new pre-trained language model optimized for abstractive text summarization. The model extends the state of the art encoder-decoder model using three techniques. First, we use a two-phase pre-training process to improve model's performance on low-resource summarization tasks. The model is first pre-trained using text corpora for language understanding, and then is continually pre-trained on summarization corpora for grounded text generation. Second, we replace self-attention layers in the encoder with disentangled attention layers, where each word is represented using two vectors that encode its content and position, respectively. Third, we use fusion-in-encoder, a simple yet effective method of encoding long sequences in a hierarchical manner. Z-Code++ creates new state of the art on 9 out of 13 text summarization tasks across 5 languages. Our model is parameter-efficient in that it outperforms the 600x larger PaLM-540B on XSum, and the finetuned 200x larger GPT3-175B on SAMSum. In zero-shot and few-shot settings, our model substantially outperforms the competing models.
z - code++:一种为抽象摘要优化的预训练语言模型
本文提出了一种新的针对抽象文本摘要进行优化的预训练语言模型z - code++。该模型使用三种技术扩展了artencoder-decoder模型的状态。首先,我们使用两阶段预训练过程来提高模型在低资源汇总任务上的性能。该模型首先使用文本语料库进行语言理解的预训练,然后继续使用摘要语料库进行基础文本生成的预训练。其次,我们将编码器中的自注意层替换为解纠缠的注意层,其中每个单词分别使用两个向量来表示其内容和位置。第三,我们使用融合编码器,这是一种简单而有效的方法,以分层方式编码长序列。z - code++在5种语言的13个文本摘要任务中的9个上创造了新的技术水平。我们的模型是参数高效的,因为它在xsum上优于600倍大的PaLM-540B,在SAMSum上优于经过微调的200倍大的GPT3-175B。在零射击和少射击设置中,我们的模型实质上优于竞争模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信