A Survey of Deep Learning Models for Structural Code Understanding

Ruoting Wu, Yuxin Zhang, Qibiao Peng, Liang Chen, Zibin Zheng
{"title":"A Survey of Deep Learning Models for Structural Code Understanding","authors":"Ruoting Wu, Yuxin Zhang, Qibiao Peng, Liang Chen, Zibin Zheng","doi":"arxiv-2205.01293","DOIUrl":null,"url":null,"abstract":"In recent years, the rise of deep learning and automation requirements in the\nsoftware industry has elevated Intelligent Software Engineering to new heights.\nThe number of approaches and applications in code understanding is growing,\nwith deep learning techniques being used in many of them to better capture the\ninformation in code data. In this survey, we present a comprehensive overview\nof the structures formed from code data. We categorize the models for\nunderstanding code in recent years into two groups: sequence-based and\ngraph-based models, further make a summary and comparison of them. We also\nintroduce metrics, datasets and the downstream tasks. Finally, we make some\nsuggestions for future research in structural code understanding field.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"166 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2205.01293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the rise of deep learning and automation requirements in the software industry has elevated Intelligent Software Engineering to new heights. The number of approaches and applications in code understanding is growing, with deep learning techniques being used in many of them to better capture the information in code data. In this survey, we present a comprehensive overview of the structures formed from code data. We categorize the models for understanding code in recent years into two groups: sequence-based and graph-based models, further make a summary and comparison of them. We also introduce metrics, datasets and the downstream tasks. Finally, we make some suggestions for future research in structural code understanding field.
结构代码理解的深度学习模型综述
近年来,软件行业深度学习和自动化需求的兴起将智能软件工程提升到新的高度。代码理解的方法和应用的数量正在增长,其中许多方法和应用都使用深度学习技术来更好地捕获代码数据中的信息。在这个调查中,我们提出了一个由代码数据形成的结构的全面概述。本文将近年来出现的代码理解模型分为基于序列的模型和基于图的模型两大类,并对它们进行了总结和比较。我们还介绍了指标、数据集和下游任务。最后,对今后结构代码理解领域的研究提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信