A Review of Causality for Learning Algorithms in Medical Image Analysis

Athanasios Vlontzos, Daniel Rueckert, Bernhard Kainz
{"title":"A Review of Causality for Learning Algorithms in Medical Image Analysis","authors":"Athanasios Vlontzos, Daniel Rueckert, Bernhard Kainz","doi":"arxiv-2206.05498","DOIUrl":null,"url":null,"abstract":"Medical image analysis is a vibrant research area that offers doctors and\nmedical practitioners invaluable insight and the ability to accurately diagnose\nand monitor disease. Machine learning provides an additional boost for this\narea. However, machine learning for medical image analysis is particularly\nvulnerable to natural biases like domain shifts that affect algorithmic\nperformance and robustness. In this paper we analyze machine learning for\nmedical image analysis within the framework of Technology Readiness Levels and\nreview how causal analysis methods can fill a gap when creating robust and\nadaptable medical image analysis algorithms. We review methods using causality\nin medical imaging AI/ML and find that causal analysis has the potential to\nmitigate critical problems for clinical translation but that uptake and\nclinical downstream research has been limited so far.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2206.05498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image analysis is a vibrant research area that offers doctors and medical practitioners invaluable insight and the ability to accurately diagnose and monitor disease. Machine learning provides an additional boost for this area. However, machine learning for medical image analysis is particularly vulnerable to natural biases like domain shifts that affect algorithmic performance and robustness. In this paper we analyze machine learning for medical image analysis within the framework of Technology Readiness Levels and review how causal analysis methods can fill a gap when creating robust and adaptable medical image analysis algorithms. We review methods using causality in medical imaging AI/ML and find that causal analysis has the potential to mitigate critical problems for clinical translation but that uptake and clinical downstream research has been limited so far.
医学图像分析中因果关系学习算法综述
医学图像分析是一个充满活力的研究领域,为医生和医疗从业者提供了宝贵的见解和准确诊断和监测疾病的能力。机器学习为这一领域提供了额外的推动力。然而,用于医学图像分析的机器学习特别容易受到影响算法性能和鲁棒性的域移位等自然偏差的影响。在本文中,我们在技术准备水平的框架内分析医学图像分析的机器学习,并回顾因果分析方法如何在创建鲁棒性和适应性强的医学图像分析算法时填补空白。我们回顾了在医学成像AI/ML中使用因果关系的方法,发现因果分析有可能缓解临床翻译的关键问题,但迄今为止,这种吸收和临床下游研究受到限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信