Priyanka Mary Mammen, Camellia Zakaria, Prashant Shenoy
{"title":"SleepLess: personalized sleep monitoring using smartphones and semi-supervised learning","authors":"Priyanka Mary Mammen, Camellia Zakaria, Prashant Shenoy","doi":"10.1007/s40012-023-00389-8","DOIUrl":null,"url":null,"abstract":"<p>Sleep affects our bodily functions and is critical in promoting every individual’s well-being. To that end, sleep health monitoring research has gained interest recently, including coupling data-driven AI techniques with mHealth adaptations of wearable, smartphone, and contactless-sensing modalities. Regardless, prior works, by and large, require gathering sufficient ground truth data to develop personalized and highly accurate sleep prediction models. This requirement inherently presents a challenge of such models underperforming when inferring sleep on new users without labeled data. In this paper, we propose <i>SleepLess</i>, which uses a semi-supervised learning pipeline over unlabeled data sensed from the user’s smartphone network activity to develop personalized models and detect their sleep duration for the night. Specifically, it uses a pre-trained model on an existing set of users to produce pseudo labels for unlabeled data of a new user and achieves personalization by fine-tuning over selectively picking the pseudo labels. Our IRB-approved user study found <i>SleepLess </i> model yielding around 96% accuracy, between 12–27 min of sleep time error and 18–25 min of wake time error. Comparison against other approaches that sought to predict with fewer labeled data found <i>SleepLess</i>, similarly yielding best performance. Our study demonstrates the feasibility of achieving personalized sleep prediction models by utilizing unlabeled data extracted from network activity of users’ smartphones, using a semi-supervised approach.</p>","PeriodicalId":501591,"journal":{"name":"CSI Transactions on ICT","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSI Transactions on ICT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40012-023-00389-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep affects our bodily functions and is critical in promoting every individual’s well-being. To that end, sleep health monitoring research has gained interest recently, including coupling data-driven AI techniques with mHealth adaptations of wearable, smartphone, and contactless-sensing modalities. Regardless, prior works, by and large, require gathering sufficient ground truth data to develop personalized and highly accurate sleep prediction models. This requirement inherently presents a challenge of such models underperforming when inferring sleep on new users without labeled data. In this paper, we propose SleepLess, which uses a semi-supervised learning pipeline over unlabeled data sensed from the user’s smartphone network activity to develop personalized models and detect their sleep duration for the night. Specifically, it uses a pre-trained model on an existing set of users to produce pseudo labels for unlabeled data of a new user and achieves personalization by fine-tuning over selectively picking the pseudo labels. Our IRB-approved user study found SleepLess model yielding around 96% accuracy, between 12–27 min of sleep time error and 18–25 min of wake time error. Comparison against other approaches that sought to predict with fewer labeled data found SleepLess, similarly yielding best performance. Our study demonstrates the feasibility of achieving personalized sleep prediction models by utilizing unlabeled data extracted from network activity of users’ smartphones, using a semi-supervised approach.