Spectral theory for self-adjoint Dirac operators with periodic potentials and inverse scattering transform for the defocusing nonlinear Schroedinger equation with periodic boundary conditions

Gino Biondini, Zechuan Zhang
{"title":"Spectral theory for self-adjoint Dirac operators with periodic potentials and inverse scattering transform for the defocusing nonlinear Schroedinger equation with periodic boundary conditions","authors":"Gino Biondini, Zechuan Zhang","doi":"arxiv-2311.18127","DOIUrl":null,"url":null,"abstract":"We formulate the inverse spectral theory for a self-adjoint one-dimensional\nDirac operator associated periodic potentials via a Riemann-Hilbert problem\napproach. We also use the resulting formalism to solve the initial value\nproblem for the nonlinear Schroedinger equation. We establish a uniqueness\ntheorem for the solutions of the Riemann-Hilbert problem, which provides a new\nmethod for obtaining the potential from the spectral data. Two additional,\nscalar Riemann-Hilbert problems are also formulated that provide conditions for\nthe periodicity in space and time of the solution generated by arbitrary sets\nof spectral data. The formalism applies for both finite-genus and\ninfinite-genus potentials. Importantly, the formalism shows that only a single\nset of Dirichlet eigenvalues is needed in order to uniquely reconstruct the\npotential of the Dirac operator and the corresponding solution of the\ndefocusing NLS equation, in contrast with the representation of the solution of\nthe NLS equation via the finite-genus formalism, in which two different sets of\nDirichlet eigenvalues are used.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.18127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate the inverse spectral theory for a self-adjoint one-dimensional Dirac operator associated periodic potentials via a Riemann-Hilbert problem approach. We also use the resulting formalism to solve the initial value problem for the nonlinear Schroedinger equation. We establish a uniqueness theorem for the solutions of the Riemann-Hilbert problem, which provides a new method for obtaining the potential from the spectral data. Two additional, scalar Riemann-Hilbert problems are also formulated that provide conditions for the periodicity in space and time of the solution generated by arbitrary sets of spectral data. The formalism applies for both finite-genus and infinite-genus potentials. Importantly, the formalism shows that only a single set of Dirichlet eigenvalues is needed in order to uniquely reconstruct the potential of the Dirac operator and the corresponding solution of the defocusing NLS equation, in contrast with the representation of the solution of the NLS equation via the finite-genus formalism, in which two different sets of Dirichlet eigenvalues are used.
具有周期势的自伴随狄拉克算子的谱理论和具有周期边界条件的非线性薛定谔方程的逆散射变换
利用黎曼-希尔伯特问题的方法,给出了自伴随一维狄拉克算子相关周期势的逆谱理论。我们还使用所得的形式来解决非线性薛定谔方程的初值问题。建立了黎曼-希尔伯特问题解的唯一性定理,为从谱数据中求势提供了一种新的方法。另外两个标量黎曼-希尔伯特问题也被公式化,为由任意谱数据集生成的解在空间和时间上的周期性提供了条件。这种形式既适用于有限格势,也适用于无限格势。重要的是,该形式表明,为了唯一地重建狄拉克算子的势和离焦NLS方程的相应解,只需要一个狄利克雷特征值的单集,而不是通过有限属形式表示NLS方程的解,其中使用了两个不同的狄利克雷特征值集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信