Periodic finite-band solutions to the focusing nonlinear Schrödinger equation by the Riemann--Hilbert approach: inverse and direct problems

Dmitry Shepelsky, Iryna Karpenvko, Stepan Bogdanov, Jaroslaw E. Prilepsky
{"title":"Periodic finite-band solutions to the focusing nonlinear Schrödinger equation by the Riemann--Hilbert approach: inverse and direct problems","authors":"Dmitry Shepelsky, Iryna Karpenvko, Stepan Bogdanov, Jaroslaw E. Prilepsky","doi":"arxiv-2311.16902","DOIUrl":null,"url":null,"abstract":"We consider the Riemann--Hilbert (RH) approach to the construction of\nperiodic finite-band solutions to the focusing nonlinear Schr\\\"odinger (NLS)\nequation, addressing the question of how the RH problem parameters can be\nretrieved from the solution. Within the RH approach, a finite-band solution to\nthe NLS equation is given in terms of the solution of an associated RH problem,\nthe jump conditions for which are characterized by specifying the endpoints of\nthe arcs defining the contour of the RH problem and the constants (so-called\nphases) involved in the jump matrices. In our work, we solve the problem of\nretrieving the phases given the solution of the NLS equation evaluated at a\nfixed time. Our findings are corroborated by numerical examples of phases\ncomputation, demonstrating the viability of the method proposed.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.16902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Riemann--Hilbert (RH) approach to the construction of periodic finite-band solutions to the focusing nonlinear Schr\"odinger (NLS) equation, addressing the question of how the RH problem parameters can be retrieved from the solution. Within the RH approach, a finite-band solution to the NLS equation is given in terms of the solution of an associated RH problem, the jump conditions for which are characterized by specifying the endpoints of the arcs defining the contour of the RH problem and the constants (so-called phases) involved in the jump matrices. In our work, we solve the problem of retrieving the phases given the solution of the NLS equation evaluated at a fixed time. Our findings are corroborated by numerical examples of phases computation, demonstrating the viability of the method proposed.
聚焦非线性Schrödinger方程的周期有限带解法:逆问题和正问题
我们考虑Riemann- Hilbert (RH)方法来构造聚焦非线性Schr\ odinger (NLS)方程的周期有限带解,解决了如何从解中提取RH问题参数的问题。在RH方法中,根据相关RH问题的解给出了NLS方程的有限波段解,该问题的跳跃条件通过指定定义RH问题轮廓的弧线端点和跳跃矩阵中涉及的常数(所谓的相位)来表征。在我们的工作中,我们解决了给定NLS方程在固定时间内的解的相位检索问题。我们的发现得到了相计算数值实例的证实,证明了所提出方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信