{"title":"Asymptotic Normality of Bias Reduction Estimation for Jump Intensity Function in Financial Markets","authors":"Yuping Song, Min Zhu, Jiawei Qiu","doi":"10.1111/jtsa.12727","DOIUrl":null,"url":null,"abstract":"<p>Continuous-time diffusion models with jumps, especially the jump intensity coefficient, can depict the impact of sudden and large shocks to financial markets. It is possible to disentangle, from the discrete observations, the contributions given by the jumps and those by the diffusion part through threshold functions. Based on this threshold technique, we employ non-parametric local linear threshold estimator for the unknown jump intensity function of a semimartingale with jumps. The asymptotic normality of our estimator is provided in the presence of finite activity jumps under certain regular conditions. The finite-sample performance for the underlying estimator has been shown through a Monte Carlo experiment and an empirical analysis on high frequency returns of indexes in the USA and China.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 4","pages":"558-583"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12727","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous-time diffusion models with jumps, especially the jump intensity coefficient, can depict the impact of sudden and large shocks to financial markets. It is possible to disentangle, from the discrete observations, the contributions given by the jumps and those by the diffusion part through threshold functions. Based on this threshold technique, we employ non-parametric local linear threshold estimator for the unknown jump intensity function of a semimartingale with jumps. The asymptotic normality of our estimator is provided in the presence of finite activity jumps under certain regular conditions. The finite-sample performance for the underlying estimator has been shown through a Monte Carlo experiment and an empirical analysis on high frequency returns of indexes in the USA and China.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.