Reliable Constructions for the Key Generator of Code-based Post-quantum Cryptosystems on FPGA

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Alvaro Cintas Canto, Mehran Mozaffari Kermani, Reza Azarderakhsh
{"title":"Reliable Constructions for the Key Generator of Code-based Post-quantum Cryptosystems on FPGA","authors":"Alvaro Cintas Canto, Mehran Mozaffari Kermani, Reza Azarderakhsh","doi":"https://dl.acm.org/doi/10.1145/3544921","DOIUrl":null,"url":null,"abstract":"<p>Advances in quantum computing have urged the need for cryptographic algorithms that are low-power, low-energy, and secure against attacks that can be potentially enabled. For this post-quantum age, different solutions have been studied. Code-based cryptography is one feasible solution whose hardware architectures have become the focus of research in the NIST standardization process and has been advanced to the final round (to be concluded by 2022–2024). Nevertheless, although these constructions, e.g., McEliece and Niederreiter public key cryptography, have strong error correction properties, previous studies have proved the vulnerability of their hardware implementations against faults product of the environment and intentional faults, i.e., differential fault analysis. It is previously shown that depending on the codes used, i.e., classical or reduced (using either quasi-dyadic Goppa codes or quasi-cyclic alternant codes), flaws in error detection could be observed. In this work, efficient fault detection constructions are proposed for the first time to account for such shortcomings. Such schemes are based on regular parity, interleaved parity, and two different cyclic redundancy checks (CRC), i.e., CRC-2 and CRC-8. Without losing the generality, we experiment on the McEliece variant, noting that the presented schemes can be used for other code-based cryptosystems. We perform error detection capability assessments and implementations on field-programmable gate array Kintex-7 device xc7k70tfbv676-1 to verify the practicality of the presented approaches. To demonstrate the appropriateness for constrained embedded systems, the performance degradation and overheads of the presented schemes are assessed.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"28 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3544921","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in quantum computing have urged the need for cryptographic algorithms that are low-power, low-energy, and secure against attacks that can be potentially enabled. For this post-quantum age, different solutions have been studied. Code-based cryptography is one feasible solution whose hardware architectures have become the focus of research in the NIST standardization process and has been advanced to the final round (to be concluded by 2022–2024). Nevertheless, although these constructions, e.g., McEliece and Niederreiter public key cryptography, have strong error correction properties, previous studies have proved the vulnerability of their hardware implementations against faults product of the environment and intentional faults, i.e., differential fault analysis. It is previously shown that depending on the codes used, i.e., classical or reduced (using either quasi-dyadic Goppa codes or quasi-cyclic alternant codes), flaws in error detection could be observed. In this work, efficient fault detection constructions are proposed for the first time to account for such shortcomings. Such schemes are based on regular parity, interleaved parity, and two different cyclic redundancy checks (CRC), i.e., CRC-2 and CRC-8. Without losing the generality, we experiment on the McEliece variant, noting that the presented schemes can be used for other code-based cryptosystems. We perform error detection capability assessments and implementations on field-programmable gate array Kintex-7 device xc7k70tfbv676-1 to verify the practicality of the presented approaches. To demonstrate the appropriateness for constrained embedded systems, the performance degradation and overheads of the presented schemes are assessed.

基于FPGA的码后量子密码系统密钥生成器的可靠构造
量子计算的进步推动了对低功耗、低能耗、安全的加密算法的需求,这些算法可以抵御潜在的攻击。在后量子时代,人们研究了不同的解决方案。基于代码的加密技术是一种可行的解决方案,其硬件架构已成为NIST标准化过程中的研究重点,并已进入最后一轮(将于2022-2024年完成)。然而,尽管这些结构(如McEliece和Niederreiter公钥加密)具有很强的纠错特性,但先前的研究已经证明,它们的硬件实现在面对环境故障产物和故意故障(即微分故障分析)时存在脆弱性。以前表明,根据所使用的代码,即,经典或简化(使用准二进Goppa码或准循环交替码),可以观察到错误检测中的缺陷。在这项工作中,首次提出了有效的故障检测结构来解决这些缺点。这些方案基于规则奇偶校验、交错奇偶校验和两种不同的循环冗余校验(CRC),即CRC-2和CRC-8。在不失去通用性的情况下,我们对McEliece变体进行了实验,注意到所提出的方案可以用于其他基于代码的密码系统。我们在现场可编程门阵列Kintex-7器件xc7k70tfbv676-1上进行了错误检测能力评估和实现,以验证所提出方法的实用性。为了证明约束嵌入式系统的适用性,评估了所提出方案的性能退化和开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems 工程技术-工程:电子与电气
CiteScore
4.80
自引率
4.50%
发文量
86
审稿时长
3 months
期刊介绍: The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system. The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信