Om Prakash Agrawal, Rosario Mireya Romero-Parra, Beneen M. Hussien, Doaa Alaa Lafta, M. Heydari Vini, S. Daneshmand
{"title":"Improvement of the Bond Strength in Al Laminates via APB Process Using Tin Particles","authors":"Om Prakash Agrawal, Rosario Mireya Romero-Parra, Beneen M. Hussien, Doaa Alaa Lafta, M. Heydari Vini, S. Daneshmand","doi":"10.1007/s11106-023-00387-0","DOIUrl":null,"url":null,"abstract":"<p>Aluminum metal matrix composites (AMMCs) are a new modern group of composite materials that are becoming more popular in industrial progress. As a solid welding method to fabricate metal matrix composites, accumulative press bonding (APB) is one of the most capable processes. One of the major disadvantages of the APB process is the weak bonding strength. This study utilizes tin (Sn) particles as filler metal to enhance the bonding strength of aluminum laminates. Thus, AA1060 bars with different content of Sn particles (interlayer filler material) were manufactured at various pressing temperatures and APB steps. The peeling test was used to evaluate the bonding strength. It was found that by increasing the number of APB steps, Sn content, and pressing temperature, better bonds of higher strength and quality were generated. The bonding strength was improved to 424 N for a sample fabricated with 15 wt.% of Sn particles at 300°C. Scanning electron microscopy (SEM) was used to examine the peeling surface of Al/Sn composite samples.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 3-4","pages":"225 - 232"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-023-00387-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum metal matrix composites (AMMCs) are a new modern group of composite materials that are becoming more popular in industrial progress. As a solid welding method to fabricate metal matrix composites, accumulative press bonding (APB) is one of the most capable processes. One of the major disadvantages of the APB process is the weak bonding strength. This study utilizes tin (Sn) particles as filler metal to enhance the bonding strength of aluminum laminates. Thus, AA1060 bars with different content of Sn particles (interlayer filler material) were manufactured at various pressing temperatures and APB steps. The peeling test was used to evaluate the bonding strength. It was found that by increasing the number of APB steps, Sn content, and pressing temperature, better bonds of higher strength and quality were generated. The bonding strength was improved to 424 N for a sample fabricated with 15 wt.% of Sn particles at 300°C. Scanning electron microscopy (SEM) was used to examine the peeling surface of Al/Sn composite samples.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.