An Enhanced Drift-Free Perturb and Observe Maximum Power Point Tracking Method Using Hybrid Metaheuristic Algorithm for a Solar Photovoltaic Power System
IF 1.5 4区 工程技术Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"An Enhanced Drift-Free Perturb and Observe Maximum Power Point Tracking Method Using Hybrid Metaheuristic Algorithm for a Solar Photovoltaic Power System","authors":"Diwaker Pathak, Aanchal Katyal, Prerna Gaur","doi":"10.1007/s40998-023-00675-w","DOIUrl":null,"url":null,"abstract":"<p>Despite of being a cleaner energy resource, the solar photovoltaic (SPV) system faces the dynamic and unpredictable changes in environmental conditions; hence, conventional and extant maximum power point tracking (MPPT) methods can get stuck at local minima. However, on account of less switching strain on the DC–DC converter, the drift-free P&O MPPT method can be supervised with effective bio-inspired metaheuristic algorithms to maximize its robustness and efficiency to generate photovoltaic power. Therefore, in this paper, the efficiency of the drift-free P&O MPPT method is significantly enhanced using a grey wolf skill embedded levy flight optimization (LI-GWO) method as a new approach. Firstly, a single-ended primary inductor converter (SEPIC)-based grid-connected SPV system is modeled to assess the MPPT performance. Further, using the LI-GWO enhanced drift-free P&O algorithm, the duty cycle of the SEPIC is regulated by updating the position of the grey wolfs based on the Brownian motion of the levy flights. Moreover, the exploration, exploitation and convergence analysis are carried out to examine the effectiveness of the proposed LI-GWO + drift-free P&O algorithm. In this manner, the proposed algorithm attains the global maxima quickly and, thereafter, the global MPP (GMPP) is tracked by the drift-free P&O itself with the less switching strain. The performance of the proposed MPPT approach is compared with the other conventional and hybrid metaheuristic-based MPPTs to show effectiveness under the newly formulated extreme weather condition model.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-023-00675-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Despite of being a cleaner energy resource, the solar photovoltaic (SPV) system faces the dynamic and unpredictable changes in environmental conditions; hence, conventional and extant maximum power point tracking (MPPT) methods can get stuck at local minima. However, on account of less switching strain on the DC–DC converter, the drift-free P&O MPPT method can be supervised with effective bio-inspired metaheuristic algorithms to maximize its robustness and efficiency to generate photovoltaic power. Therefore, in this paper, the efficiency of the drift-free P&O MPPT method is significantly enhanced using a grey wolf skill embedded levy flight optimization (LI-GWO) method as a new approach. Firstly, a single-ended primary inductor converter (SEPIC)-based grid-connected SPV system is modeled to assess the MPPT performance. Further, using the LI-GWO enhanced drift-free P&O algorithm, the duty cycle of the SEPIC is regulated by updating the position of the grey wolfs based on the Brownian motion of the levy flights. Moreover, the exploration, exploitation and convergence analysis are carried out to examine the effectiveness of the proposed LI-GWO + drift-free P&O algorithm. In this manner, the proposed algorithm attains the global maxima quickly and, thereafter, the global MPP (GMPP) is tracked by the drift-free P&O itself with the less switching strain. The performance of the proposed MPPT approach is compared with the other conventional and hybrid metaheuristic-based MPPTs to show effectiveness under the newly formulated extreme weather condition model.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.