The maximal subgroups of the exceptional groups $F_{4}(q)$ , $E_{6}(q)$ and $^{2}\!E_{6}(q)$ and related almost simple groups

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
David A. Craven
{"title":"The maximal subgroups of the exceptional groups $F_{4}(q)$ , $E_{6}(q)$ and $^{2}\\!E_{6}(q)$ and related almost simple groups","authors":"David A. Craven","doi":"10.1007/s00222-023-01208-2","DOIUrl":null,"url":null,"abstract":"<p>This article produces a complete list of all maximal subgroups of the finite simple groups of type <span>\\(F_{4}\\)</span>, <span>\\(E_{6}\\)</span> and twisted <span>\\(E_{6}\\)</span> over all finite fields. Along the way, we determine the collection of Lie primitive almost simple subgroups of the corresponding algebraic groups. We give the stabilizers under the actions of outer automorphisms, from which one can obtain complete information about the maximal subgroups of all almost simple groups with socle one of these groups. We also provide a new maximal subgroup of <span>\\(^{2}\\!F_{4}(8)\\)</span>, correcting the maximal subgroups for that group from the list of Malle. This provides the first new exceptional groups of Lie type to have their maximal subgroups enumerated for three decades. The techniques are a mixture of algebraic groups, representation theory, computational algebra, and use of the trilinear form on the 27-dimensional minimal module for <span>\\(E_{6}\\)</span>. We provide a collection of supplementary Magma files that prove the author’s computational claims, yielding existence and the number of conjugacy classes of all maximal subgroups mentioned in the text.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-023-01208-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This article produces a complete list of all maximal subgroups of the finite simple groups of type \(F_{4}\), \(E_{6}\) and twisted \(E_{6}\) over all finite fields. Along the way, we determine the collection of Lie primitive almost simple subgroups of the corresponding algebraic groups. We give the stabilizers under the actions of outer automorphisms, from which one can obtain complete information about the maximal subgroups of all almost simple groups with socle one of these groups. We also provide a new maximal subgroup of \(^{2}\!F_{4}(8)\), correcting the maximal subgroups for that group from the list of Malle. This provides the first new exceptional groups of Lie type to have their maximal subgroups enumerated for three decades. The techniques are a mixture of algebraic groups, representation theory, computational algebra, and use of the trilinear form on the 27-dimensional minimal module for \(E_{6}\). We provide a collection of supplementary Magma files that prove the author’s computational claims, yielding existence and the number of conjugacy classes of all maximal subgroups mentioned in the text.

例外群$F_{4}(q)$、$E_{6}(q)$和$^{2}\!E_{6}(q)$的极大子群及相关的几乎简单群
本文生成了所有有限域上类型为\(F_{4}\)、\(E_{6}\)和扭曲\(E_{6}\)的有限简单群的所有极大子群的完整列表。在此过程中,我们确定了相应代数群的李基元几乎简单子群的集合。给出了外自同构作用下的稳定子,由此可以得到所有几乎单群的极大子群的完全信息。我们还提供了一个新的极大子群\(^{2}\!F_{4}(8)\),从Malle列表中修正了该组的极大子群。这提供了三十年来第一个有其极大子群枚举的李型新例外群。这些技术混合了代数群、表示理论、计算代数,以及在\(E_{6}\)的27维最小模块上使用三线性形式。我们提供了一组补充的Magma文件,证明了作者的计算主张,给出了文中提到的所有极大子群的存在性和共轭类的个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信