{"title":"Composition analysis of exudates produced by conifers grown in Taiwan and their antifungal activity","authors":"Tsao, Nai-Wen, Lin, Yen-Chi, Tseng, Yen-Hsueh, Chien, Shih-Chang, Wang, Sheng-Yang","doi":"10.1186/s10086-022-02056-z","DOIUrl":null,"url":null,"abstract":"Exudates are involved in the defense mechanism of trees; they could work against insects or microorganisms through a physical or chemical system. The main components of exudates are terpenoids. This study identified the main compounds of exudates from 13 conifers of Taiwan using gas chromatogram–mass spectrometry (GC–MS) and spectroscopic analysis. The results revealed that the main volatiles were α-pinene, β-ocimene, β-pinene, sabinene, and caryophyllene. On the other hand, the main nonvolatile compounds were diterpenoids, which were classified into three skeletons (abietane-, labdane-, and pimarane-types). Among these, abietane-type presented in Pinaceae and in most of Cupressaceae; labdane-type presented in Pinaceae and in all of Cupressaceae and Araucariaceae; pimarane-type existed in both Pinaceae and Cupressaceae. Furthermore, the epigenetics of conifers analysis results by GC–MS and heteronuclear single quantum coherence (HSQC) of nuclear magnetic resonance (NMR) fingerprints were similar to traditional taxonomy classification; it indicated that exudates chemotaxonomy by using GC–MS and HSQC profiling is a useful technology to classify the conifers. Besides, the exudates of Pinus elliottii, Pinus taiwanensis, Calocedrus macrolepis and Chamaecyparis formosensis possessed the strong antifungal activity. For white-rot fungus, Trametes versicolor, Pinus morrisonicola, Chamaecyparis obtusa, and Araucaria heterophylla exhibited the higher antifungal index. For brown-rot fungus, Laetiporus sulphureus, Pinus elliottii, Pinus morrisonicola, and Chamaecyparis formosensis revealed a good antifungal activity.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"17 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-022-02056-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Exudates are involved in the defense mechanism of trees; they could work against insects or microorganisms through a physical or chemical system. The main components of exudates are terpenoids. This study identified the main compounds of exudates from 13 conifers of Taiwan using gas chromatogram–mass spectrometry (GC–MS) and spectroscopic analysis. The results revealed that the main volatiles were α-pinene, β-ocimene, β-pinene, sabinene, and caryophyllene. On the other hand, the main nonvolatile compounds were diterpenoids, which were classified into three skeletons (abietane-, labdane-, and pimarane-types). Among these, abietane-type presented in Pinaceae and in most of Cupressaceae; labdane-type presented in Pinaceae and in all of Cupressaceae and Araucariaceae; pimarane-type existed in both Pinaceae and Cupressaceae. Furthermore, the epigenetics of conifers analysis results by GC–MS and heteronuclear single quantum coherence (HSQC) of nuclear magnetic resonance (NMR) fingerprints were similar to traditional taxonomy classification; it indicated that exudates chemotaxonomy by using GC–MS and HSQC profiling is a useful technology to classify the conifers. Besides, the exudates of Pinus elliottii, Pinus taiwanensis, Calocedrus macrolepis and Chamaecyparis formosensis possessed the strong antifungal activity. For white-rot fungus, Trametes versicolor, Pinus morrisonicola, Chamaecyparis obtusa, and Araucaria heterophylla exhibited the higher antifungal index. For brown-rot fungus, Laetiporus sulphureus, Pinus elliottii, Pinus morrisonicola, and Chamaecyparis formosensis revealed a good antifungal activity.
期刊介绍:
The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.