Linear hyperelliptic Hodge integrals

IF 0.5 4区 数学 Q3 MATHEMATICS
Adam Afandi
{"title":"Linear hyperelliptic Hodge integrals","authors":"Adam Afandi","doi":"10.1007/s00229-023-01519-x","DOIUrl":null,"url":null,"abstract":"<p>We provide a closed form expression for linear Hodge integrals on the hyperelliptic locus. Specifically, we find a succinct combinatorial formula for all intersection numbers on the hyperelliptic locus with one <span>\\(\\lambda \\)</span>-class, and powers of a <span>\\(\\psi \\)</span>-class pulled back along the branch map. This is achieved by using Atiyah–Bott localization on a stack of stable maps into the orbifold <span>\\(\\left[ {\\mathbb {P}}^1/{\\mathbb {Z}}_2\\right] \\)</span>.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"45 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-023-01519-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We provide a closed form expression for linear Hodge integrals on the hyperelliptic locus. Specifically, we find a succinct combinatorial formula for all intersection numbers on the hyperelliptic locus with one \(\lambda \)-class, and powers of a \(\psi \)-class pulled back along the branch map. This is achieved by using Atiyah–Bott localization on a stack of stable maps into the orbifold \(\left[ {\mathbb {P}}^1/{\mathbb {Z}}_2\right] \).

Abstract Image

线性超椭圆Hodge积分
给出了超椭圆轨迹上的线性Hodge积分的一个封闭表达式。具体地说,我们找到了一个简洁的组合公式,用于在一个\(\lambda \) -类的超椭圆轨迹上的所有交点数,以及一个\(\psi \) -类的幂沿着分支映射向后拉。这是通过在一堆稳定的轨道图\(\left[ {\mathbb {P}}^1/{\mathbb {Z}}_2\right] \)上使用阿蒂亚-博特定位来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信