Mathematical and numerical analyses of a stochastic impulse control model with imperfect interventions

IF 1.2 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yoshioka, Hidekazu, Yaegashi, Yuta
{"title":"Mathematical and numerical analyses of a stochastic impulse control model with imperfect interventions","authors":"Yoshioka, Hidekazu, Yaegashi, Yuta","doi":"10.1186/s13362-021-00112-9","DOIUrl":null,"url":null,"abstract":"A stochastic impulse control problem with imperfect controllability of interventions is formulated with an emphasis on applications to ecological and environmental management problems. The imperfectness comes from uncertainties with respect to the magnitude of interventions. Our model is based on a dynamic programming formalism to impulsively control a 1-D diffusion process of a geometric Brownian type. The imperfectness leads to a non-local operator different from the many conventional ones, and evokes a slightly different optimal intervention policy. We give viscosity characterizations of the Hamilton–Jacobi–Bellman Quasi-Variational Inequality (HJBQVI) governing the value function focusing on its numerical computation. Uniqueness and verification results of the HJBQVI are presented and a candidate exact solution is constructed. The HJBQVI is solved with the two different numerical methods, an ordinary differential equation (ODE) based method and a finite difference scheme, demonstrating their consistency. Furthermore, the resulting controlled dynamics are extensively analyzed focusing on a bird population management case from a statistical standpoint.","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"82 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-021-00112-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A stochastic impulse control problem with imperfect controllability of interventions is formulated with an emphasis on applications to ecological and environmental management problems. The imperfectness comes from uncertainties with respect to the magnitude of interventions. Our model is based on a dynamic programming formalism to impulsively control a 1-D diffusion process of a geometric Brownian type. The imperfectness leads to a non-local operator different from the many conventional ones, and evokes a slightly different optimal intervention policy. We give viscosity characterizations of the Hamilton–Jacobi–Bellman Quasi-Variational Inequality (HJBQVI) governing the value function focusing on its numerical computation. Uniqueness and verification results of the HJBQVI are presented and a candidate exact solution is constructed. The HJBQVI is solved with the two different numerical methods, an ordinary differential equation (ODE) based method and a finite difference scheme, demonstrating their consistency. Furthermore, the resulting controlled dynamics are extensively analyzed focusing on a bird population management case from a statistical standpoint.
不完全干预下随机脉冲控制模型的数学和数值分析
提出了一个具有不完全可控性的随机脉冲控制问题,并着重讨论了其在生态和环境管理问题中的应用。这种不完美来自于干预力度的不确定性。我们的模型是基于一个动态规划的形式来脉冲控制一个几何布朗型的一维扩散过程。这种不完全性导致非局部操作者不同于许多传统的操作者,并引起了稍微不同的最优干预策略。本文给出了控制值函数的Hamilton-Jacobi-Bellman拟变分不等式(HJBQVI)的粘滞特性,重点讨论了其数值计算。给出了HJBQVI的唯一性和验证结果,构造了一个候选精确解。用常微分方程法和有限差分法两种不同的数值方法对HJBQVI进行了求解,证明了它们的一致性。此外,本文还从统计学的角度对一个鸟类种群管理案例进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics in Industry
Journal of Mathematics in Industry MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.00
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信