Shear thickening in dense bidisperse suspensions

IF 3 2区 工程技术 Q2 MECHANICS
Nelya Malbranche, Bulbul Chakraborty, Jeffrey F. Morris
{"title":"Shear thickening in dense bidisperse suspensions","authors":"Nelya Malbranche, Bulbul Chakraborty, Jeffrey F. Morris","doi":"10.1122/8.0000495","DOIUrl":null,"url":null,"abstract":"Discrete-particle simulations of bidisperse shear thickening suspensions are reported. The work considers two packing parameters, the large-to-small particle radius ratio ranging from <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo>=</mo><mn>1.4</mn></math></span><span></span> (nearly monodisperse) to <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo>=</mo><mn>4</mn></math></span><span></span>, and the large particle fraction of the total solid loading with values <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo>=</mo><mn>0.15</mn></math></span><span></span>, 0.5, and 0.85. Particle-scale simulations are performed over a broad range of shear stresses using a simulation model for spherical particles accounting for short-range lubrication forces, frictional interaction, and repulsion between particles. The variation of rheological properties and the maximum packing fraction <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mi>ϕ</mi><mi>J</mi></msub></math></span><span></span> with shear stress <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi></math></span><span></span> are reported. At a fixed volume fraction <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span>, bidispersity decreases the suspension relative viscosity <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mi>η</mi><mi>r</mi></msub><mo>=</mo><msub><mi>η</mi><mi>s</mi></msub><mo>/</mo><msub><mi>η</mi><mn>0</mn></msub></math></span><span></span>, where <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mi>η</mi><mi>s</mi></msub></math></span><span></span> is the suspension viscosity and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mi>η</mi><mn>0</mn></msub></math></span><span></span> is the suspending fluid viscosity, over the entire range of shear stresses studied. However, under low shear stress conditions, the suspension exhibits an unusual rheological behavior: the minimum viscosity does not occur as expected at <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo>≈</mo><mn>0.5</mn></math></span><span></span>, but instead decreases with further increase of <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi></math></span><span></span> to <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mn>0.85</mn></math></span><span></span>. The second normal stress difference <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mi>N</mi><mn>2</mn></msub></math></span><span></span> acts similarly. This behavior is caused by particles ordering into a layered structure, as is also reflected by the zero slope with respect to time of the mean-square displacement in the velocity gradient direction. The relative viscosity <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mi>η</mi><mi>r</mi></msub></math></span><span></span> of bidisperse rate-dependent suspensions can be predicted by a power law linking it to <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mi>ϕ</mi><mi>J</mi></msub></math></span><span></span>, <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mi>η</mi><mi>r</mi></msub><mo>=</mo><msup><mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo>−</mo><mi>ϕ</mi><mo>/</mo><msub><mi>ϕ</mi><mi>J</mi></msub><mo stretchy=\"false\">)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span></span> in both low and high shear stress regimes. The agreement between the power law and experimental data from literature demonstrates that the model captures well the effect of particle size distribution, showing that viscosity roughly collapses onto a single master curve when plotted against the reduced volume fraction <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi><mo>/</mo><msub><mi>ϕ</mi><mi>J</mi></msub></math></span><span></span>.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"85 2 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000495","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Discrete-particle simulations of bidisperse shear thickening suspensions are reported. The work considers two packing parameters, the large-to-small particle radius ratio ranging from δ=1.4 (nearly monodisperse) to δ=4, and the large particle fraction of the total solid loading with values ζ=0.15, 0.5, and 0.85. Particle-scale simulations are performed over a broad range of shear stresses using a simulation model for spherical particles accounting for short-range lubrication forces, frictional interaction, and repulsion between particles. The variation of rheological properties and the maximum packing fraction ϕJ with shear stress σ are reported. At a fixed volume fraction ϕ, bidispersity decreases the suspension relative viscosity ηr=ηs/η0, where ηs is the suspension viscosity and η0 is the suspending fluid viscosity, over the entire range of shear stresses studied. However, under low shear stress conditions, the suspension exhibits an unusual rheological behavior: the minimum viscosity does not occur as expected at ζ0.5, but instead decreases with further increase of ζ to 0.85. The second normal stress difference N2 acts similarly. This behavior is caused by particles ordering into a layered structure, as is also reflected by the zero slope with respect to time of the mean-square displacement in the velocity gradient direction. The relative viscosity ηr of bidisperse rate-dependent suspensions can be predicted by a power law linking it to ϕJ, ηr=(1ϕ/ϕJ)2 in both low and high shear stress regimes. The agreement between the power law and experimental data from literature demonstrates that the model captures well the effect of particle size distribution, showing that viscosity roughly collapses onto a single master curve when plotted against the reduced volume fraction ϕ/ϕJ.
在密集的双分散悬浮液中剪切增厚
报道了双分散剪切增稠悬浮液的离散粒子模拟。该工作考虑了两个填料参数,大小颗粒半径比范围从δ=1.4(几乎单分散)到δ=4,以及大颗粒分数的总固体负荷ζ=0.15, 0.5和0.85。颗粒尺度的模拟是在广泛的剪切应力范围内进行的,使用球形颗粒的模拟模型,考虑了短程润滑力、摩擦相互作用和颗粒之间的排斥力。报道了剪切应力σ对填料流变性能和最大填料分数的影响。在固定体积分数φ下,在研究的整个剪切应力范围内,双分散降低了悬浮液相对粘度ηr=ηs/η0,其中ηs为悬浮液粘度,η0为悬浮液粘度。然而,在低剪切应力条件下,悬浮液表现出不寻常的流变行为:最小粘度并不像预期的那样在ζ≈0.5时出现,而是随着ζ进一步增加到0.85而下降。第二个法向应力差N2的作用类似。这种行为是由粒子排列成层状结构引起的,这也反映在速度梯度方向的均方位移相对于时间的零斜率上。双分散速率相关悬浊液的相对粘度ηr可以通过将其与ϕ j相连接的幂律来预测,ηr=(1−φ /ϕ)−2在低和高剪切应力状态下。幂律和文献中的实验数据之间的一致表明,该模型很好地捕获了粒径分布的影响,表明粘度大致崩溃到单个主曲线上,当绘制针对减小体积分数φ /ϕ j时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rheology
Journal of Rheology 物理-力学
CiteScore
6.60
自引率
12.10%
发文量
100
审稿时长
1 months
期刊介绍: The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信