Martin–Löf reducibility and cost functions

IF 0.8 2区 数学 Q2 MATHEMATICS
Noam Greenberg, Joseph S. Miller, André Nies, Dan Turetsky
{"title":"Martin–Löf reducibility and cost functions","authors":"Noam Greenberg, Joseph S. Miller, André Nies, Dan Turetsky","doi":"10.1007/s11856-023-2565-x","DOIUrl":null,"url":null,"abstract":"<p>Martin—Löf (ML)-reducibility compares the complexity of <i>K</i>-trivial sets of natural numbers by examining the Martin—Löf random sequences that compute them. One says that a <i>K</i>-trivial set <i>A</i> is ML-reducible to a <i>K</i>-trivial set <i>B</i> if every ML-random computing <i>B</i> also computes <i>A</i>. We show that every <i>K</i>-trivial set is computable from a c.e. set of the same ML-degree. We investigate the interplay between ML-reducibility and cost functions, which are used to both measure the number of changes in a computable approximation, and the type of null sets intended to capture ML-random sequences. We show that for every cost function there is a c.e. set that is ML-complete among the sets obeying it. We characterise the <i>K</i>-trivial sets computable from a fragment of the left-c.e. random real Ω given by a computable set of bit positions. This leads to a new characterisation of strong jump-traceability.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2565-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Martin—Löf (ML)-reducibility compares the complexity of K-trivial sets of natural numbers by examining the Martin—Löf random sequences that compute them. One says that a K-trivial set A is ML-reducible to a K-trivial set B if every ML-random computing B also computes A. We show that every K-trivial set is computable from a c.e. set of the same ML-degree. We investigate the interplay between ML-reducibility and cost functions, which are used to both measure the number of changes in a computable approximation, and the type of null sets intended to capture ML-random sequences. We show that for every cost function there is a c.e. set that is ML-complete among the sets obeying it. We characterise the K-trivial sets computable from a fragment of the left-c.e. random real Ω given by a computable set of bit positions. This leads to a new characterisation of strong jump-traceability.

Martin-Löf可约性和成本函数
Martin-Löf (ML)-可简化性通过检查计算它们的Martin-Löf随机序列来比较k -平凡自然数集的复杂性。一个说,如果每个ml随机计算B也计算a,那么k -平凡集a是ml可约为k -平凡集B。我们证明了每个k -平凡集都可以从相同ml度的c.e.集计算。我们研究了机器学习可约性和成本函数之间的相互作用,成本函数用于测量可计算近似值中的变化数量,以及用于捕获机器学习随机序列的空集类型。我们证明,对于每一个代价函数,在服从它的集合中都有一个c.e.集是ml完全的。我们刻画了k -平凡集合的特征,这些集合可由左-c - e的一个片段计算。随机实数Ω由一组可计算的位位置给出。这导致了强跳跃可追溯性的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信