Adsorption of phosphorus onto nanoscale zero-valent iron/activated carbon: removal mechanisms, thermodynamics, and interferences

IF 2.3 Q2 Environmental Science
Adel Adly, Nagwan G. Mostafa, Abdelsalam Elawwad
{"title":"Adsorption of phosphorus onto nanoscale zero-valent iron/activated carbon: removal mechanisms, thermodynamics, and interferences","authors":"Adel Adly, Nagwan G. Mostafa, Abdelsalam Elawwad","doi":"10.2166/wrd.2022.103","DOIUrl":null,"url":null,"abstract":"<p>This study investigated removal mechanisms, thermodynamics, and interferences of phosphorus adsorption onto nanoscale zero-valent iron (nZVI)/activated carbon composite. Activated carbon was successfully used as support for nZVI particles to overcome shortcomings of using nZVI include its tendency to aggregate and separation difficulties. A comprehensive characterization was done for the composite particles, which revealed a high specific surface area of 72.66 m<sup>2</sup>/g and an average particle size of 37 nm. Several adsorption isotherms and kinetic models have been applied to understand the removal mechanisms. Adsorption isotherm is best fitted by Freundlich and Langmuir models, which indicates that the estimated maximum phosphorus adsorption capacity is 53.76 mg/g at pH 4. Adsorption kinetics showed that the chemisorption process behaved according to a pseudo-second-order model. An adsorption mechanism study conducted using the intra-particle diffusion and Boyd kinetic models indicated that the adsorption rate is limited by surface diffusion. A thermodynamic study showed that phosphorus removal efficiency increased as the solution temperature increased from 15 to 37 °C. Finally, the results of an interference study showed that the presence of Ni<sup>2+</sup>, Cu<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup> cations, nitrate ions (<span>⁠<img alt=\"\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwrd/12/1/10.2166_wrd.2022.103/1/m_wreuse-d-21-00103if01.gif?Expires=1651762139&amp;Signature=mC4pvIcqjh7ScdlVBarklSj9BT0HppbRKVmmAsIVlupWE0SSjSia~1oqF16URluPJ5jMmAQ7K1~UFkkr6DJqnrJ-m0vl-HxFPunw8Dl3WVwx1~wHwGaotWJD93h3TaFGL8ZqX-QQU7rTeDZl2AW8ZKIYhECq2FW~ckLw~N9W-BRA36KyZp588j-MwkyMq3a2F5~uV2FwyTMTJEKg9U~RGdBQsh~xhTI8cTLWbDjohyvlfBRsX4yfrQU00O~I8dS-jLdnZ91yMSCXKe5IFFuCxEnfDUdenl5BvdoK0PVfkUOX-3H3jekukO9aekXCT~uOXPCwJZJwIK7uUZhXdgn44Q__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"wreuse-d-21-00103if01.gif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwrd/12/1/10.2166_wrd.2022.103/1/m_wreuse-d-21-00103if01.gif?Expires=1651762139&amp;Signature=mC4pvIcqjh7ScdlVBarklSj9BT0HppbRKVmmAsIVlupWE0SSjSia~1oqF16URluPJ5jMmAQ7K1~UFkkr6DJqnrJ-m0vl-HxFPunw8Dl3WVwx1~wHwGaotWJD93h3TaFGL8ZqX-QQU7rTeDZl2AW8ZKIYhECq2FW~ckLw~N9W-BRA36KyZp588j-MwkyMq3a2F5~uV2FwyTMTJEKg9U~RGdBQsh~xhTI8cTLWbDjohyvlfBRsX4yfrQU00O~I8dS-jLdnZ91yMSCXKe5IFFuCxEnfDUdenl5BvdoK0PVfkUOX-3H3jekukO9aekXCT~uOXPCwJZJwIK7uUZhXdgn44Q__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/>⁠</span>), and sodium acetate improves removal efficiency, while the presence of sulfate ions (<span>⁠<img alt=\"\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwrd/12/1/10.2166_wrd.2022.103/1/m_wreuse-d-21-00103if02.gif?Expires=1651762139&amp;Signature=Xh2YjnzypwuJnKmNkqGYhGVKqDTu8-t6K5DVm82-FeZoGi~FXSQgfUhGxrs3yMR5UayN0jBxkS07R0Wh0tClEnytxQXPFKxThs8K41-Nsqyan1pbFJuoJT0VOOgX3ETVdP26QwdPlF5y2Xz9eWNJ27sli5P0bIuSJDUiCrRbHnB9MShy7uKKA~dEzbGIz63Jf36CxYKcLu6vqmTEixknf1HOmAaF-SeziezYCAKXj7JHhX4kuU6lP75A1Wy2HofuMztMuHHegIAAmLq~IDGXjJP~fX1EP91E2pGktkdqdn9uN5VcxeVaIS3CHV3okY5CW8b~kuynpizrNPBedpYbpA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"wreuse-d-21-00103if02.gif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwrd/12/1/10.2166_wrd.2022.103/1/m_wreuse-d-21-00103if02.gif?Expires=1651762139&amp;Signature=Xh2YjnzypwuJnKmNkqGYhGVKqDTu8-t6K5DVm82-FeZoGi~FXSQgfUhGxrs3yMR5UayN0jBxkS07R0Wh0tClEnytxQXPFKxThs8K41-Nsqyan1pbFJuoJT0VOOgX3ETVdP26QwdPlF5y2Xz9eWNJ27sli5P0bIuSJDUiCrRbHnB9MShy7uKKA~dEzbGIz63Jf36CxYKcLu6vqmTEixknf1HOmAaF-SeziezYCAKXj7JHhX4kuU6lP75A1Wy2HofuMztMuHHegIAAmLq~IDGXjJP~fX1EP91E2pGktkdqdn9uN5VcxeVaIS3CHV3okY5CW8b~kuynpizrNPBedpYbpA__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/>⁠</span>) and urea reduces removal efficiency.</p>","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2022.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated removal mechanisms, thermodynamics, and interferences of phosphorus adsorption onto nanoscale zero-valent iron (nZVI)/activated carbon composite. Activated carbon was successfully used as support for nZVI particles to overcome shortcomings of using nZVI include its tendency to aggregate and separation difficulties. A comprehensive characterization was done for the composite particles, which revealed a high specific surface area of 72.66 m2/g and an average particle size of 37 nm. Several adsorption isotherms and kinetic models have been applied to understand the removal mechanisms. Adsorption isotherm is best fitted by Freundlich and Langmuir models, which indicates that the estimated maximum phosphorus adsorption capacity is 53.76 mg/g at pH 4. Adsorption kinetics showed that the chemisorption process behaved according to a pseudo-second-order model. An adsorption mechanism study conducted using the intra-particle diffusion and Boyd kinetic models indicated that the adsorption rate is limited by surface diffusion. A thermodynamic study showed that phosphorus removal efficiency increased as the solution temperature increased from 15 to 37 °C. Finally, the results of an interference study showed that the presence of Ni2+, Cu2+, Ca2+, Na+ cations, nitrate ions (Abstract Image), and sodium acetate improves removal efficiency, while the presence of sulfate ions (Abstract Image) and urea reduces removal efficiency.

纳米级零价铁/活性炭对磷的吸附:去除机制、热力学和干扰
研究了纳米级零价铁(nZVI)/活性炭复合材料对磷的吸附机理、热力学和干扰因素。采用活性炭作为载体,克服了使用nZVI容易聚集和分离困难的缺点。对复合颗粒进行了全面表征,其比表面积为72.66 m2/g,平均粒径为37 nm。应用了几种吸附等温线和动力学模型来了解其去除机理。Freundlich和Langmuir模型对吸附等温线的拟合效果最好,在pH值为4时,磷的最大吸附量为53.76 mg/g。吸附动力学表明,化学吸附过程符合准二阶模型。利用颗粒内扩散和Boyd动力学模型进行的吸附机理研究表明,吸附速率受表面扩散的限制。热力学研究表明,当溶液温度从15℃升高到37℃时,除磷效率提高。最后,干扰研究结果表明,Ni2+、Cu2+、Ca2+、Na+阳离子、硝酸盐离子(ω ω)和乙酸钠的存在提高了去除效率,而硫酸盐离子(ω ω ω)和尿素的存在降低了去除效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Water Reuse and Desalination
Journal of Water Reuse and Desalination ENGINEERING, ENVIRONMENTAL-WATER RESOURCES
CiteScore
4.30
自引率
0.00%
发文量
23
审稿时长
16 weeks
期刊介绍: Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信