Xiang-qing Zhang, Xiao-fei Zhang, Xu Qiu, Dan Gao, Yu-ning Zhang
{"title":"Experimental study of the dynamics of a single cavitation bubble excited by a focused laser near the boundary of a rigid wall","authors":"Xiang-qing Zhang, Xiao-fei Zhang, Xu Qiu, Dan Gao, Yu-ning Zhang","doi":"10.1007/s42241-023-0069-0","DOIUrl":null,"url":null,"abstract":"<div><p>Based on high-speed photographic experiments, this study presents a detailed qualitative and quantitative analysis of the dynamics of a single cavitation bubble near the boundary of a rigid wall in asymmetric settings. The main findings are reported as follows: (1) The non-sphericity of the bubble interface decreases with increasing spacing between the bubble and the boundary, and the asymmetry of the bubble becomes more significant with increasing asymmetry angle. (2) The motion mode of the bubble cluster in the second oscillation cycle can be divided into two typical modes depending on the direction of movement. (3) The angle between the oblique jet pointing towards the upper wall surface and the horizontal direction in the second oscillation cycle decreases as the dimensionless spacing decreases.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"35 5","pages":"942 - 953"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-023-0069-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Based on high-speed photographic experiments, this study presents a detailed qualitative and quantitative analysis of the dynamics of a single cavitation bubble near the boundary of a rigid wall in asymmetric settings. The main findings are reported as follows: (1) The non-sphericity of the bubble interface decreases with increasing spacing between the bubble and the boundary, and the asymmetry of the bubble becomes more significant with increasing asymmetry angle. (2) The motion mode of the bubble cluster in the second oscillation cycle can be divided into two typical modes depending on the direction of movement. (3) The angle between the oblique jet pointing towards the upper wall surface and the horizontal direction in the second oscillation cycle decreases as the dimensionless spacing decreases.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.