{"title":"Design Space Exploration of Galois and Fibonacci Configuration Based on Espresso Stream Cipher","authors":"Zhengyuan Shi, Cheng Chen, Gangqiang Yang, Hailiang Xiong, Fudong Li, Honggang Hu, Zhiguo Wan","doi":"https://dl.acm.org/doi/10.1145/3567428","DOIUrl":null,"url":null,"abstract":"<p>Fibonacci and Galois are two different kinds of configurations in stream ciphers. Although many transformations between two configurations have been proposed, there is no sufficient analysis of their FPGA performance. Espresso stream cipher provides an ideal sample to explore such a problem. The 128-bit secret key Espresso is designed in Galois configuration, and there is a Fibonacci-configured Espresso variant proved with the equivalent security level. To fully leverage the efficiency of two configurations, we explore the hardware optimization approaches toward area and throughput, respectively. In short, the FPGA-implemented Fibonacci cipher is more suitable for extremely resource-constrained or high-throughput applications, while the Galois cipher compromises both area and speed. To the best of our knowledge, this is the first work to systematically compare the FPGA performance of cipher configurations under relatively fair cryptographic security. We hope this work can serve as a reference for the cryptography hardware architecture research community.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"30 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3567428","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Fibonacci and Galois are two different kinds of configurations in stream ciphers. Although many transformations between two configurations have been proposed, there is no sufficient analysis of their FPGA performance. Espresso stream cipher provides an ideal sample to explore such a problem. The 128-bit secret key Espresso is designed in Galois configuration, and there is a Fibonacci-configured Espresso variant proved with the equivalent security level. To fully leverage the efficiency of two configurations, we explore the hardware optimization approaches toward area and throughput, respectively. In short, the FPGA-implemented Fibonacci cipher is more suitable for extremely resource-constrained or high-throughput applications, while the Galois cipher compromises both area and speed. To the best of our knowledge, this is the first work to systematically compare the FPGA performance of cipher configurations under relatively fair cryptographic security. We hope this work can serve as a reference for the cryptography hardware architecture research community.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.