Jianyu Chen, Yizhou Wang, Zhengnan Tian, Jin Zhao, Yanwen Ma, Husam N. Alshareef
{"title":"Recent developments in three-dimensional Zn metal anodes for battery applications","authors":"Jianyu Chen, Yizhou Wang, Zhengnan Tian, Jin Zhao, Yanwen Ma, Husam N. Alshareef","doi":"10.1002/inf2.12485","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc (Zn) ion batteries (AZIBs) are regarded as one of the promising candidates for next-generation electrochemical energy storage systems due to their low cost, high safety, and environmental friendliness. However, the commercialization of AZIBs has been severely restricted by the growth of dendrite at the Zn metal anode. Tailoring the planar-structured Zn anodes into three-dimensional (3D) structures has proven to be an effective way to modulate the plating/stripping behavior of Zn anodes, resulting in the suppression of dendrite formation. This review provides an up-to-date review of 3D structured Zn metal anodes, including working principles, design, current status, and future prospects. We aim to give the readers a comprehensive understanding of 3D-structured Zn anodes and their effective usage to enhance AZIB performance.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 1","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12485","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12485","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc (Zn) ion batteries (AZIBs) are regarded as one of the promising candidates for next-generation electrochemical energy storage systems due to their low cost, high safety, and environmental friendliness. However, the commercialization of AZIBs has been severely restricted by the growth of dendrite at the Zn metal anode. Tailoring the planar-structured Zn anodes into three-dimensional (3D) structures has proven to be an effective way to modulate the plating/stripping behavior of Zn anodes, resulting in the suppression of dendrite formation. This review provides an up-to-date review of 3D structured Zn metal anodes, including working principles, design, current status, and future prospects. We aim to give the readers a comprehensive understanding of 3D-structured Zn anodes and their effective usage to enhance AZIB performance.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.