Liouville theorems for nonnegative solutions to weighted Schrödinger equations with logarithmic nonlinearities

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Yuxia Guo, Shaolong Peng
{"title":"Liouville theorems for nonnegative solutions to weighted Schrödinger equations with logarithmic nonlinearities","authors":"Yuxia Guo, Shaolong Peng","doi":"10.4310/dpde.2024.v21.n1.a2","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the physically interesting static weighted Schrödinger equations involving logarithmic nonlinearities:\\[(-\\Delta)^s u = c_1 {\\lvert x \\rvert}^a u^{p_1} \\log (1 + u^{q_1}) + c_2 {\\lvert x \\rvert}^b\\Bigl( \\dfrac{1}{{\\lvert \\: \\cdot \\: \\rvert}^\\sigma} \\Bigr) u^{p_2} \\quad \\textrm{,}\\]where $n \\geq 2, 0 \\lt s =: m + \\frac{\\alpha}{2} \\lt +\\infty , 0 \\lt \\alpha \\leq 2, 0 \\lt \\sigma \\lt n, c_1, c_2 \\geq 0$ with $c_1 + c_2 \\gt 0, 0 \\leq a, b \\lt+\\infty$. Here we point out the above equations involving higher-order or higher-order fractional Laplacians. We first derive the Liouville theorems (i.e., non-existence of nontrivial nonnegative solutions) in the subcritical-order cases (see Theorem 1.1) via the method of scaling spheres. Secondly, we obtain the Liouville-type results in critical and supercritical-order cases (see Theorem 1.2) by using some integral inequalities. As applications, we also derive Liouville-type results for the Schrödinger system involving logarithmic nonlinearities (see Theorem 1.4).","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2024.v21.n1.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the physically interesting static weighted Schrödinger equations involving logarithmic nonlinearities:\[(-\Delta)^s u = c_1 {\lvert x \rvert}^a u^{p_1} \log (1 + u^{q_1}) + c_2 {\lvert x \rvert}^b\Bigl( \dfrac{1}{{\lvert \: \cdot \: \rvert}^\sigma} \Bigr) u^{p_2} \quad \textrm{,}\]where $n \geq 2, 0 \lt s =: m + \frac{\alpha}{2} \lt +\infty , 0 \lt \alpha \leq 2, 0 \lt \sigma \lt n, c_1, c_2 \geq 0$ with $c_1 + c_2 \gt 0, 0 \leq a, b \lt+\infty$. Here we point out the above equations involving higher-order or higher-order fractional Laplacians. We first derive the Liouville theorems (i.e., non-existence of nontrivial nonnegative solutions) in the subcritical-order cases (see Theorem 1.1) via the method of scaling spheres. Secondly, we obtain the Liouville-type results in critical and supercritical-order cases (see Theorem 1.2) by using some integral inequalities. As applications, we also derive Liouville-type results for the Schrödinger system involving logarithmic nonlinearities (see Theorem 1.4).
对数非线性加权Schrödinger方程非负解的Liouville定理
在本文中,我们关注物理上有趣的静态加权Schrödinger方程,涉及对数非线性:\[(-\Delta)^s u = c_1 {\lvert x \rvert}^a u^{p_1} \log (1 + u^{q_1}) + c_2 {\lvert x \rvert}^b\Bigl( \dfrac{1}{{\lvert \: \cdot \: \rvert}^\sigma} \Bigr) u^{p_2} \quad \textrm{,}\]其中$n \geq 2, 0 \lt s =: m + \frac{\alpha}{2} \lt +\infty , 0 \lt \alpha \leq 2, 0 \lt \sigma \lt n, c_1, c_2 \geq 0$与$c_1 + c_2 \gt 0, 0 \leq a, b \lt+\infty$。这里我们指出上述方程涉及高阶或高阶分数拉普拉斯算子。我们首先通过标度球的方法推导了次临界阶情况下的Liouville定理(即非平凡非负解的不存在性)(见定理1.1)。其次,利用一些积分不等式得到临界阶和超临界阶情况下的liouville型结果(见定理1.2)。作为应用,我们还推导了涉及对数非线性的Schrödinger系统的liouville型结果(见定理1.4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信