Precise large deviations for a multidimensional risk model with regression dependence structure

IF 0.7 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL
Yang Liu, Ke-Ang Fu, Zhenlong Chen
{"title":"Precise large deviations for a multidimensional risk model with regression dependence structure","authors":"Yang Liu, Ke-Ang Fu, Zhenlong Chen","doi":"10.1017/s0269964823000220","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a nonstandard multidimensional risk model, in which the claim sizes <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0269964823000220_inline1.png\" /> <jats:tex-math>$\\{\\vec{X}_k, k\\ge 1\\}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> form an independent and identically distributed random vector sequence with dependent components. By assuming that there exists the regression dependence structure between inter-arrival time and the claim-size vectors, we extend the regression dependence to a more practical multidimensional risk model. For the univariate marginal distributions of claim vectors with consistently varying tails, we obtain the precise large deviation formulas for the multidimensional risk model with the regression size-dependent structure.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"209 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000220","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a nonstandard multidimensional risk model, in which the claim sizes $\{\vec{X}_k, k\ge 1\}$ form an independent and identically distributed random vector sequence with dependent components. By assuming that there exists the regression dependence structure between inter-arrival time and the claim-size vectors, we extend the regression dependence to a more practical multidimensional risk model. For the univariate marginal distributions of claim vectors with consistently varying tails, we obtain the precise large deviation formulas for the multidimensional risk model with the regression size-dependent structure.
具有回归依赖结构的多维风险模型的精确大偏差
本文考虑一个非标准多维风险模型,其中索赔规模$\{\vec{X}_k, k\ge 1\}$是一个独立的、具有相关分量的同分布随机向量序列。通过假设到达间隔时间与索赔规模向量之间存在回归依赖结构,将回归依赖关系扩展到更实际的多维风险模型。对于尾部连续变化的索赔向量的单变量边际分布,我们得到了具有回归规模依赖结构的多维风险模型的精确大偏差公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
18.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信