Temporal evolution of the extreme excursions of multivariate k $$ k $$ th order Markov processes with application to oceanographic data

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2023-12-03 DOI:10.1002/env.2834
Stan Tendijck, Philip Jonathan, David Randell, Jonathan Tawn
{"title":"Temporal evolution of the extreme excursions of multivariate \n \n \n k\n \n $$ k $$\n th order Markov processes with application to oceanographic data","authors":"Stan Tendijck,&nbsp;Philip Jonathan,&nbsp;David Randell,&nbsp;Jonathan Tawn","doi":"10.1002/env.2834","DOIUrl":null,"url":null,"abstract":"<p>We develop two models for the temporal evolution of extreme events of multivariate <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math>th order Markov processes. The foundation of our methodology lies in the conditional extremes model of Heffernan and Tawn (<i>Journal of the Royal Statistical Society: Series B (Methodology)</i>, 2014, 66, 497–546), and it naturally extends the work of Winter and Tawn (<i>Journal of the Royal Statistical Society: Series C (Applied Statistics)</i>, 2016, 65, 345–365; <i>Extremes</i>, 2017, 20, 393–415) and Tendijck et al. (<i>Environmetrics</i> 2019, 30, e2541) to include multivariate random variables. We use cross-validation-type techniques to develop a model order selection procedure, and we test our models on two-dimensional meteorological-oceanographic data with directional covariates for a location in the northern North Sea. We conclude that the newly-developed models perform better than the widely used historical matching methodology for these data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2834","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2834","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We develop two models for the temporal evolution of extreme events of multivariate k $$ k $$ th order Markov processes. The foundation of our methodology lies in the conditional extremes model of Heffernan and Tawn (Journal of the Royal Statistical Society: Series B (Methodology), 2014, 66, 497–546), and it naturally extends the work of Winter and Tawn (Journal of the Royal Statistical Society: Series C (Applied Statistics), 2016, 65, 345–365; Extremes, 2017, 20, 393–415) and Tendijck et al. (Environmetrics 2019, 30, e2541) to include multivariate random variables. We use cross-validation-type techniques to develop a model order selection procedure, and we test our models on two-dimensional meteorological-oceanographic data with directional covariates for a location in the northern North Sea. We conclude that the newly-developed models perform better than the widely used historical matching methodology for these data.

Abstract Image

多元k $$ k $$阶马尔可夫过程极值漂移的时间演化及其在海洋资料中的应用
我们建立了两个多元k $$ k $$阶马尔可夫过程的极端事件的时间演化模型。我们的方法基础在于Heffernan和Tawn的条件极值模型(《皇家统计学会杂志》:B辑(方法论),2014年,66,497 - 546),它自然地扩展了Winter和Tawn的工作(《皇家统计学会杂志》:C辑(应用统计),2016年,65,345 - 365;极端,2017,20,393 - 415)和Tendijck等人(Environmetrics 2019, 30, e2541),包括多变量随机变量。我们使用交叉验证型技术来开发模型顺序选择程序,并在北海北部的一个位置使用定向协变量的二维气象-海洋学数据测试我们的模型。我们得出结论,新开发的模型比广泛使用的历史匹配方法对这些数据表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信