A VLF/LF facility network for preseismic electromagnetic investigations

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Patrick H. M. Galopeau, Ashanthi S. Maxworth, Mohammed Y. Boudjada, Hans U. Eichelberger, Mustapha Meftah, Pier F. Biagi, Konrad Schwingenschuh
{"title":"A VLF/LF facility network for preseismic electromagnetic investigations","authors":"Patrick H. M. Galopeau, Ashanthi S. Maxworth, Mohammed Y. Boudjada, Hans U. Eichelberger, Mustapha Meftah, Pier F. Biagi, Konrad Schwingenschuh","doi":"10.5194/gi-12-231-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Earthquakes are one of the most frequently occurring natural disasters. Many indications have been collected on the presence of seismo-ionospheric perturbations preceding such tragic phenomena. Radio techniques are the essential tools leading the detection of seismo-electromagnetic emissions by monitoring at very low-frequency (VLF, 3–30 kHz) and low-frequency (LF, 30–300 kHz) sub-ionospheric paths between transmitters and receivers (Hayakawa, 2015). In this brief communication, we present the implementation of a VLF/LF network to search for earthquake electromagnetic precursors. The proposed system is comprised of a monopole antenna including a preamplifier, a GPS receiver and a recording device. This system will deliver a steady stream of real-time amplitude and phase measurements as well as a daily recording VLF/LF data set. The first implementation of the system was done in Graz, Austria. The second one will be in Guyancourt (France), with a third one in Réunion (France) and a fourth one in Moratuwa (Sri Lanka). In the near future, we are planning to expand our network for enhanced monitoring and increased coverage.","PeriodicalId":48742,"journal":{"name":"Geoscientific Instrumentation Methods and Data Systems","volume":"206 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Instrumentation Methods and Data Systems","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gi-12-231-2023","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Earthquakes are one of the most frequently occurring natural disasters. Many indications have been collected on the presence of seismo-ionospheric perturbations preceding such tragic phenomena. Radio techniques are the essential tools leading the detection of seismo-electromagnetic emissions by monitoring at very low-frequency (VLF, 3–30 kHz) and low-frequency (LF, 30–300 kHz) sub-ionospheric paths between transmitters and receivers (Hayakawa, 2015). In this brief communication, we present the implementation of a VLF/LF network to search for earthquake electromagnetic precursors. The proposed system is comprised of a monopole antenna including a preamplifier, a GPS receiver and a recording device. This system will deliver a steady stream of real-time amplitude and phase measurements as well as a daily recording VLF/LF data set. The first implementation of the system was done in Graz, Austria. The second one will be in Guyancourt (France), with a third one in Réunion (France) and a fourth one in Moratuwa (Sri Lanka). In the near future, we are planning to expand our network for enhanced monitoring and increased coverage.
用于震前电磁调查的VLF/LF设施网络
摘要。地震是最频繁发生的自然灾害之一。许多迹象表明,在这种悲剧性现象之前,地震-电离层扰动的存在。无线电技术是通过监测发射机和接收机之间的极低频(VLF, 3-30 kHz)和低频(LF, 30-300 kHz)亚电离层路径来探测地震电磁发射的重要工具(Hayakawa, 2015)。在这篇简短的通讯中,我们提出了一个VLF/LF网络来搜索地震电磁前兆的实现。所提出的系统由单极天线(包括前置放大器)、GPS接收器和记录装置组成。该系统将提供稳定的实时幅度和相位测量流,以及每日记录VLF/LF数据集。该系统的第一个实施是在奥地利的格拉茨完成的。第二个将在圭亚古尔(法国),第三个将在卢旺达(法国),第四个将在莫拉图瓦(斯里兰卡)。在不久的将来,我们计划扩大我们的网络,以加强监测和增加覆盖范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscientific Instrumentation Methods and Data Systems
Geoscientific Instrumentation Methods and Data Systems GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
3.70
自引率
0.00%
发文量
23
审稿时长
37 weeks
期刊介绍: Geoscientific Instrumentation, Methods and Data Systems (GI) is an open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers three main areas: (i) atmospheric and geospace sciences, (ii) earth science, and (iii) ocean science. A unique feature of the journal is the emphasis on synergy between science and technology that facilitates advances in GI. These advances include but are not limited to the following: concepts, design, and description of instrumentation and data systems; retrieval techniques of scientific products from measurements; calibration and data quality assessment; uncertainty in measurements; newly developed and planned research platforms and community instrumentation capabilities; major national and international field campaigns and observational research programs; new observational strategies to address societal needs in areas such as monitoring climate change and preventing natural disasters; networking of instruments for enhancing high temporal and spatial resolution of observations. GI has an innovative two-stage publication process involving the scientific discussion forum Geoscientific Instrumentation, Methods and Data Systems Discussions (GID), which has been designed to do the following: foster scientific discussion; maximize the effectiveness and transparency of scientific quality assurance; enable rapid publication; make scientific publications freely accessible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信