Gellerstedt Problem with a Nonlocal Oddness Boundary Condition for the Lavrent’ev–Bitsadze Equation

Pub Date : 2023-11-23 DOI:10.1134/s00122661230100051
T. E. Moiseev
{"title":"Gellerstedt Problem with a Nonlocal Oddness Boundary Condition for the Lavrent’ev–Bitsadze Equation","authors":"T. E. Moiseev","doi":"10.1134/s00122661230100051","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the Gellerstedt problem for the Lavrent’ev–Bitsadze equation with the oddness\nboundary condition on the boundary of the ellipticity domain. All eigenvalues and eigenfunctions\nare obtained in closed form. It is proved that the system of eigenfunctions is complete in the\nelliptic part of the domain and incomplete in the entire domain. The unique solvability of the\nproblem is also proved; the solution is written in the form of a series if the spectral parameter is\nnot equal to an eigenvalue. For the spectral parameter coinciding with an eigenvalue, solvability\nconditions are obtained under which the family of solutions is found in the form of a series. A\ncondition for the solvability of the problem depending on the eigenvalues is obtained. The\nconstructed analytical solutions can be used efficiently in numerical modeling of transonic gas\ndynamics problems.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s00122661230100051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Gellerstedt problem for the Lavrent’ev–Bitsadze equation with the oddness boundary condition on the boundary of the ellipticity domain. All eigenvalues and eigenfunctions are obtained in closed form. It is proved that the system of eigenfunctions is complete in the elliptic part of the domain and incomplete in the entire domain. The unique solvability of the problem is also proved; the solution is written in the form of a series if the spectral parameter is not equal to an eigenvalue. For the spectral parameter coinciding with an eigenvalue, solvability conditions are obtained under which the family of solutions is found in the form of a series. A condition for the solvability of the problem depending on the eigenvalues is obtained. The constructed analytical solutions can be used efficiently in numerical modeling of transonic gas dynamics problems.

分享
查看原文
Lavrent 'ev-Bitsadze方程非局部奇异边界条件下的Gellerstedt问题
研究椭圆域边界上具有奇性边界条件的Lavrent 'ev-Bitsadze方程的Gellerstedt问题。所有特征值和特征函数都以封闭形式得到。证明了本征函数系统在定义域的椭圆部分是完全的,在整个定义域是不完全的。并证明了问题的唯一可解性;如果谱参数不等于特征值,则解以级数形式表示。对于与特征值一致的谱参数,得到了以级数形式找到族解的可解性条件。得到了该问题随特征值可解的条件。所构造的解析解可有效地用于跨声速气体动力学问题的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信