On the Properties of the Root Vector Function Systems of a $$2m $$ th-Order Dirac Type Operator with an Integrable Potential

IF 0.8 4区 数学 Q2 MATHEMATICS
E. C. Ibadov
{"title":"On the Properties of the Root Vector Function Systems of a $$2m $$ th-Order Dirac Type Operator with an Integrable Potential","authors":"E. C. Ibadov","doi":"10.1134/s00122661230100014","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider a Dirac type operator with matrix coefficients. Estimates for the root vector\nfunctions are established, and criteria for the Bessel property and the unconditional basis property\nof the root vector function systems of this operator in the space <span>\\(L_{2}^{2m}(G) \\)</span>, where <span>\\(G=(a,b)\\subset \\mathbb {R} \\)</span> is a finite interval, are obtained.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"189 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s00122661230100014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Dirac type operator with matrix coefficients. Estimates for the root vector functions are established, and criteria for the Bessel property and the unconditional basis property of the root vector function systems of this operator in the space \(L_{2}^{2m}(G) \), where \(G=(a,b)\subset \mathbb {R} \) is a finite interval, are obtained.

具有可积势的$$2m $$ th阶Dirac型算子的根向量函数系的性质
考虑一类具有矩阵系数的Dirac型算子。建立了根向量函数的估计,得到了该算子的根向量函数系统在\(G=(a,b)\subset \mathbb {R} \)为有限区间的空间\(L_{2}^{2m}(G) \)上的贝塞尔性质和无条件基性质的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信