{"title":"A simplified multi-objective particle swarm optimization algorithm","authors":"Vibhu Trivedi, Pushkar Varshney, Manojkumar Ramteke","doi":"10.1007/s11721-019-00170-1","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization is a popular nature-inspired metaheuristic algorithm and has been used extensively to solve single- and multi-objective optimization problems over the last two decades. Several local and global search strategies, and learning and parameter adaptation strategies have been included in particle swarm optimization to improve its performance over the years. Most of these approaches are observed to increase the number of user-defined parameters and algorithmic steps resulting in an increased complexity of the algorithm. This paper presents a simplified multi-objective particle swarm optimization algorithm in which the exploitation (guided) and exploration (random) moves are simplified using a detailed qualitative analysis of similar existing operators present in the real-coded elitist non-dominated sorting genetic algorithm and the particle swarm optimization algorithm. The developed algorithm is then tested quantitatively on 30 well-known benchmark problems and compared with a real-coded elitist non-dominated sorting genetic algorithm, and its variant with a simulated binary jumping gene operator and multi-objective non-dominated sorting particle swarm optimization algorithm. In the comparison, the developed algorithm is found to be superior in terms of convergence speed. It is also found to be better with respect to four recent multi-objective particle swarm optimization algorithms and four differential evolution variants in an extended comparative analysis. Finally, it is applied to a newly formulated industrial multi-objective optimization problem of a residue (bottom product from the crude distillation unit) fluid catalytic cracking unit where it shows a better performance than the other compared algorithms.","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"22 1","pages":"1 - 34"},"PeriodicalIF":2.1000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-019-00170-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Particle swarm optimization is a popular nature-inspired metaheuristic algorithm and has been used extensively to solve single- and multi-objective optimization problems over the last two decades. Several local and global search strategies, and learning and parameter adaptation strategies have been included in particle swarm optimization to improve its performance over the years. Most of these approaches are observed to increase the number of user-defined parameters and algorithmic steps resulting in an increased complexity of the algorithm. This paper presents a simplified multi-objective particle swarm optimization algorithm in which the exploitation (guided) and exploration (random) moves are simplified using a detailed qualitative analysis of similar existing operators present in the real-coded elitist non-dominated sorting genetic algorithm and the particle swarm optimization algorithm. The developed algorithm is then tested quantitatively on 30 well-known benchmark problems and compared with a real-coded elitist non-dominated sorting genetic algorithm, and its variant with a simulated binary jumping gene operator and multi-objective non-dominated sorting particle swarm optimization algorithm. In the comparison, the developed algorithm is found to be superior in terms of convergence speed. It is also found to be better with respect to four recent multi-objective particle swarm optimization algorithms and four differential evolution variants in an extended comparative analysis. Finally, it is applied to a newly formulated industrial multi-objective optimization problem of a residue (bottom product from the crude distillation unit) fluid catalytic cracking unit where it shows a better performance than the other compared algorithms.
期刊介绍:
Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research
and developments in the multidisciplinary field of swarm intelligence. The journal publishes
original research articles and occasional review articles on theoretical, experimental and/or
practical aspects of swarm intelligence. All articles are published both in print and in electronic
form. There are no page charges for publication. Swarm Intelligence is published quarterly.
The field of swarm intelligence deals with systems composed of many individuals that coordinate
using decentralized control and self-organization. In particular, it focuses on the collective
behaviors that result from the local interactions of the individuals with each other and with their
environment. It is a fast-growing field that encompasses the efforts of researchers in multiple
disciplines, ranging from ethology and social science to operations research and computer
engineering.
Swarm Intelligence will report on advances in the understanding and utilization of swarm
intelligence systems, that is, systems that are based on the principles of swarm intelligence. The
following subjects are of particular interest to the journal:
• modeling and analysis of collective biological systems such as social insect colonies, flocking
vertebrates, and human crowds as well as any other swarm intelligence systems;
• application of biological swarm intelligence models to real-world problems such as distributed
computing, data clustering, graph partitioning, optimization and decision making;
• theoretical and empirical research in ant colony optimization, particle swarm optimization,
swarm robotics, and other swarm intelligence algorithms.