On weak compactness in projective tensor products

IF 0.6 4区 数学 Q3 MATHEMATICS
José Rodríguez
{"title":"On weak compactness in projective tensor products","authors":"José Rodríguez","doi":"10.1093/qmath/haac036","DOIUrl":null,"url":null,"abstract":"We study the property of being strongly weakly compactly generated (and some relatives) in projective tensor products of Banach spaces. Our main result is as follows. Let $1 \\unicode{x003C} p,q\\unicode{x003C}\\infty$ be such that $1/p+1/q\\geq 1$. Let X (resp., Y) be a Banach space with a countable unconditional finite-dimensional Schauder decomposition having a disjoint lower p-estimate (resp., q-estimate). If X and Y are strongly weakly compactly generated, then so is their projective tensor product $X {\\widehat{\\otimes}_\\pi} Y$.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haac036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the property of being strongly weakly compactly generated (and some relatives) in projective tensor products of Banach spaces. Our main result is as follows. Let $1 \unicode{x003C} p,q\unicode{x003C}\infty$ be such that $1/p+1/q\geq 1$. Let X (resp., Y) be a Banach space with a countable unconditional finite-dimensional Schauder decomposition having a disjoint lower p-estimate (resp., q-estimate). If X and Y are strongly weakly compactly generated, then so is their projective tensor product $X {\widehat{\otimes}_\pi} Y$.
关于射影张量积的弱紧性
研究了Banach空间的射影张量积的强弱紧生成(及其相关性质)。我们的主要结果如下。让$1 \unicode{x003C} p,q\unicode{x003C}\infty$变成$1/p+1/q\geq 1$。设X。, Y)是一个Banach空间,该空间具有一个不相交的低p估计(p < 0.05)的可数无条件有限维Schauder分解。, q-estimate)。如果X和Y是强弱紧生成的,那么它们的射影张量积$X {\widehat{\otimes}_\pi} Y$也是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信