Maria Caamano, José Miguel Juan, Michael Felux, Daniel Gerbeth, Guillermo González‐Casado, Jaume Sanz
{"title":"Network‐based ionospheric gradient monitoring to support GBAS","authors":"Maria Caamano, José Miguel Juan, Michael Felux, Daniel Gerbeth, Guillermo González‐Casado, Jaume Sanz","doi":"10.1002/navi.411","DOIUrl":null,"url":null,"abstract":"Large ionospheric gradients acting between a Ground Based Augmentation System (GBAS) reference station and an aircraft on approach could lead to hazardous position errors if undetected. Current GBAS stations provide solutions against this threat that rely on the use of “worst‐case” conservative threat models, which could limit the availability of the system.","PeriodicalId":501157,"journal":{"name":"NAVIGATION","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAVIGATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Large ionospheric gradients acting between a Ground Based Augmentation System (GBAS) reference station and an aircraft on approach could lead to hazardous position errors if undetected. Current GBAS stations provide solutions against this threat that rely on the use of “worst‐case” conservative threat models, which could limit the availability of the system.