Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia

IF 2.7 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Olfa Terwayet Bayouli, Wanchang Zhang, Houssem Terwayet Bayouli
{"title":"Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia","authors":"Olfa Terwayet Bayouli, Wanchang Zhang, Houssem Terwayet Bayouli","doi":"10.1007/s40333-023-0110-8","DOIUrl":null,"url":null,"abstract":"<p>Droughts and soil erosion are among the most prominent climatic driven hazards in drylands, leading to detrimental environmental impacts, such as degraded lands, deteriorated ecosystem services and biodiversity, and increased greenhouse gas emissions. In response to the current lack of studies combining drought conditions and soil erosion processes, in this study, we developed a comprehensive Geographic Information System (GIS)-based approach to assess soil erosion and droughts, thereby revealing the relationship between soil erosion and droughts under an arid climate. The vegetation condition index (VCI) and temperature condition index (TCI) derived respectively from the enhanced vegetation index (EVI) MOD13A2 and land surface temperature (LST) MOD11A2 products were combined to generate the vegetation health index (VHI). The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed, southeastern Tunisia. The revised universal soil loss equation (RUSLE) model was applied to quantitatively estimate soil erosion. The relationship between soil erosion and droughts was investigated through Pearson correlation. Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016. The average soil erosion rate was determined to be 1.8 t/(hm<sup>2</sup>·a). The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts. The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion. The relationship between droughts and soil erosion had a positive correlation (<i>r</i>=0.3); however, the correlation was highly varied spatially across the watershed. Drought was linked to soil erosion in the Negueb watershed. The current study provides insight for natural disaster risk assessment, land managers, and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"269 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-023-0110-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Droughts and soil erosion are among the most prominent climatic driven hazards in drylands, leading to detrimental environmental impacts, such as degraded lands, deteriorated ecosystem services and biodiversity, and increased greenhouse gas emissions. In response to the current lack of studies combining drought conditions and soil erosion processes, in this study, we developed a comprehensive Geographic Information System (GIS)-based approach to assess soil erosion and droughts, thereby revealing the relationship between soil erosion and droughts under an arid climate. The vegetation condition index (VCI) and temperature condition index (TCI) derived respectively from the enhanced vegetation index (EVI) MOD13A2 and land surface temperature (LST) MOD11A2 products were combined to generate the vegetation health index (VHI). The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed, southeastern Tunisia. The revised universal soil loss equation (RUSLE) model was applied to quantitatively estimate soil erosion. The relationship between soil erosion and droughts was investigated through Pearson correlation. Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016. The average soil erosion rate was determined to be 1.8 t/(hm2·a). The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts. The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion. The relationship between droughts and soil erosion had a positive correlation (r=0.3); however, the correlation was highly varied spatially across the watershed. Drought was linked to soil erosion in the Negueb watershed. The current study provides insight for natural disaster risk assessment, land managers, and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments.

结合RUSLE模型和植被健康指数揭示突尼斯东南部土壤侵蚀与干旱的关系
干旱和土壤侵蚀是旱地最突出的气候驱动灾害之一,导致有害的环境影响,如土地退化、生态系统服务和生物多样性恶化以及温室气体排放增加。针对目前缺乏将干旱条件与土壤侵蚀过程相结合的研究的不足,本研究基于地理信息系统(GIS)开发了一种综合评估土壤侵蚀与干旱的方法,从而揭示了干旱气候条件下土壤侵蚀与干旱的关系。将增强型植被指数(EVI) MOD13A2和地表温度(LST) MOD11A2产品分别得到的植被状况指数(VCI)和温度状况指数(TCI)相结合,得到植被健康指数(VHI)。VHI被设想为监测突尼斯东南部Negueb流域干旱的有效工具。采用修正的通用土壤流失方程(RUSLE)模型对土壤侵蚀进行了定量估算。利用Pearson相关分析了土壤侵蚀与干旱的关系。结果表明:2000-2016年,Negueb流域经历了多次中度至极端干旱。平均土壤侵蚀速率为1.8 t/(hm2·a)。流域的西部山区不仅最容易受到水土流失的影响,而且最容易受到干旱的影响。结果表明,坡长和坡度因子对土壤侵蚀的控制作用最为显著。干旱与土壤侵蚀呈显著正相关(r=0.3);然而,流域间的相关性在空间上变化很大。干旱与Negueb流域的土壤侵蚀有关。目前的研究为自然灾害风险评估、土地管理者和利益相关者提供了见解,以便采取适当的管理措施,促进脆弱环境中的可持续发展目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Arid Land
Journal of Arid Land ENVIRONMENTAL SCIENCES-
CiteScore
4.70
自引率
6.70%
发文量
768
审稿时长
3.2 months
期刊介绍: The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large. The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信