{"title":"Less is More: Removing Redundancy of Graph Convolutional Networks for Recommendation","authors":"Shaowen Peng, Kazunari Sugiyama, Tsunenori Mine","doi":"10.1145/3632751","DOIUrl":null,"url":null,"abstract":"<p>While Graph Convolutional Networks (GCNs) have shown great potential in recommender systems and collaborative filtering (CF), they suffer from expensive computational complexity and poor scalability. On top of that, recent works mostly combine GCNs with other advanced algorithms which further sacrifice model efficiency and scalability. In this work, we unveil the redundancy of existing GCN-based methods in three aspects: (1) <b>Feature redundancy</b>. By reviewing GCNs from a spectral perspective, we show that most spectral graph features are noisy for recommendation, while stacking graph convolution layers can suppress but cannot completely remove the noisy features, which we mostly summarize from our previous work; (2) <b>Structure redundancy</b>. By providing a deep insight into how user/item representations are generated, we show that what makes them distinctive lies in the spectral graph features, while the core idea of GCNs (<i>i.e.,</i> neighborhood aggregation) is not the reason making GCNs effective; and (3) <b>Distribution redundancy</b>. Following observations from (1), we further show that the number of required spectral features is closely related to the spectral distribution, where important information tends to be concentrated in more (fewer) spectral features on a flatter (sharper) distribution. To make important information be concentrated in as few features as possible, we sharpen the spectral distribution by increasing the node similarity without changing the original data, thereby reducing the computational cost. To remove these three kinds of redundancies, we propose a Simplified Graph Denoising Encoder (SGDE) only exploiting the top-<i>K</i> singular vectors without explicitly aggregating neighborhood, which significantly reduces the complexity of GCN-based methods. We further propose a scalable contrastive learning framework to alleviate data sparsity and to boost model robustness and generalization, leading to significant improvement. Extensive experiments on three real-world datasets show that our proposed SGDE not only achieves state-of-the-art but also shows higher scalability and efficiency than our previously proposed GDE as well as traditional and GCN-based CF methods.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3632751","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
While Graph Convolutional Networks (GCNs) have shown great potential in recommender systems and collaborative filtering (CF), they suffer from expensive computational complexity and poor scalability. On top of that, recent works mostly combine GCNs with other advanced algorithms which further sacrifice model efficiency and scalability. In this work, we unveil the redundancy of existing GCN-based methods in three aspects: (1) Feature redundancy. By reviewing GCNs from a spectral perspective, we show that most spectral graph features are noisy for recommendation, while stacking graph convolution layers can suppress but cannot completely remove the noisy features, which we mostly summarize from our previous work; (2) Structure redundancy. By providing a deep insight into how user/item representations are generated, we show that what makes them distinctive lies in the spectral graph features, while the core idea of GCNs (i.e., neighborhood aggregation) is not the reason making GCNs effective; and (3) Distribution redundancy. Following observations from (1), we further show that the number of required spectral features is closely related to the spectral distribution, where important information tends to be concentrated in more (fewer) spectral features on a flatter (sharper) distribution. To make important information be concentrated in as few features as possible, we sharpen the spectral distribution by increasing the node similarity without changing the original data, thereby reducing the computational cost. To remove these three kinds of redundancies, we propose a Simplified Graph Denoising Encoder (SGDE) only exploiting the top-K singular vectors without explicitly aggregating neighborhood, which significantly reduces the complexity of GCN-based methods. We further propose a scalable contrastive learning framework to alleviate data sparsity and to boost model robustness and generalization, leading to significant improvement. Extensive experiments on three real-world datasets show that our proposed SGDE not only achieves state-of-the-art but also shows higher scalability and efficiency than our previously proposed GDE as well as traditional and GCN-based CF methods.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.