{"title":"Reverse time migration for imaging periodic obstacles with electromagnetic plane wave","authors":"Lide Cai, Junqing Chen","doi":"10.1515/jiip-2023-0039","DOIUrl":null,"url":null,"abstract":"We propose novel reverse time migration (RTM) methods for the imaging of periodic obstacles using only measurements from the lower or upper side of the obstacle arrays at a fixed frequency. We analyze the resolution of the lower side and upper side RTM methods in terms of propagating modes of the Rayleigh expansion, Helmholtz–Kirchhoff equation and the distance of the measurement surface to the obstacle arrays, where the periodic structure leads to novel analysis. We give some numerical experiments to justify the competitive efficiency of our imaging functionals and the robustness against noises. Further, numerical experiments show sharp images especially for the vertical part of the periodic obstacle in the lower-RTM case, which is not shared by results for imaging bounded compactly supported obstacles.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose novel reverse time migration (RTM) methods for the imaging of periodic obstacles using only measurements from the lower or upper side of the obstacle arrays at a fixed frequency. We analyze the resolution of the lower side and upper side RTM methods in terms of propagating modes of the Rayleigh expansion, Helmholtz–Kirchhoff equation and the distance of the measurement surface to the obstacle arrays, where the periodic structure leads to novel analysis. We give some numerical experiments to justify the competitive efficiency of our imaging functionals and the robustness against noises. Further, numerical experiments show sharp images especially for the vertical part of the periodic obstacle in the lower-RTM case, which is not shared by results for imaging bounded compactly supported obstacles.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography