Sustainable Environmental Design Using Green IOT with Hybrid Deep Learning and Building Algorithm for Smart City

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuting Zhong, Zesheng Qin, Abdulmajeed Alqhatani, Ahmed Sayed M. Metwally, Ashit Kumar Dutta, Joel J. P. C. Rodrigues
{"title":"Sustainable Environmental Design Using Green IOT with Hybrid Deep Learning and Building Algorithm for Smart City","authors":"Yuting Zhong, Zesheng Qin, Abdulmajeed Alqhatani, Ahmed Sayed M. Metwally, Ashit Kumar Dutta, Joel J. P. C. Rodrigues","doi":"10.1007/s10723-023-09704-8","DOIUrl":null,"url":null,"abstract":"<p>Smart cities and urbanization use enormous IoT devices to transfer data for analysis and information processing. These IoT can relate to billions of devices and transfer essential data from their surroundings. There is a massive need for energy because of the tremendous data exchange between billions of gadgets. Green IoT aims to make the environment a better place while lowering the power usage of IoT devices. In this work, a hybrid deep learning method called \"Green energy-efficient routing (GEER) with long short-term memory deep Q-Network is used to minimize the energy consumption of devices. Initially, a GEER with Ant Colony Optimization (ACO) and AutoEncoder (AE) provides efficient routing between devices in the network. Next, the long short-term memory deep Q-Network based Reinforcement Learning (RL) method reduces the energy consumption of IoT devices. This hybrid approach leverages the strengths of each technique to address different aspects of energy-efficient routing. ACO and AE contribute to efficient routing decisions, while LSTM DQN optimizes energy consumption, resulting in a well-rounded solution. Finally, the proposed GELSDQN-ACO method is compared with previous methods such as RNN-LSTM, DPC-DBN, and LSTM-DQN. Moreover, we critically analyze the green IoT and perform implementation and evaluation.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"10 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09704-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Smart cities and urbanization use enormous IoT devices to transfer data for analysis and information processing. These IoT can relate to billions of devices and transfer essential data from their surroundings. There is a massive need for energy because of the tremendous data exchange between billions of gadgets. Green IoT aims to make the environment a better place while lowering the power usage of IoT devices. In this work, a hybrid deep learning method called "Green energy-efficient routing (GEER) with long short-term memory deep Q-Network is used to minimize the energy consumption of devices. Initially, a GEER with Ant Colony Optimization (ACO) and AutoEncoder (AE) provides efficient routing between devices in the network. Next, the long short-term memory deep Q-Network based Reinforcement Learning (RL) method reduces the energy consumption of IoT devices. This hybrid approach leverages the strengths of each technique to address different aspects of energy-efficient routing. ACO and AE contribute to efficient routing decisions, while LSTM DQN optimizes energy consumption, resulting in a well-rounded solution. Finally, the proposed GELSDQN-ACO method is compared with previous methods such as RNN-LSTM, DPC-DBN, and LSTM-DQN. Moreover, we critically analyze the green IoT and perform implementation and evaluation.

基于混合深度学习和建筑算法的绿色物联网可持续环境设计
智慧城市和城市化使用大量物联网设备来传输数据以进行分析和信息处理。这些物联网可以与数十亿台设备相关,并从周围环境传输重要数据。由于数十亿设备之间的巨大数据交换,对能源的需求非常大。绿色物联网旨在使环境变得更美好,同时降低物联网设备的功耗。在这项工作中,使用了一种名为“绿色节能路由(GEER)与长短期记忆深度Q-Network的混合深度学习方法来最小化设备的能量消耗。首先,采用蚁群优化(ACO)和自动编码器(AE)的GEER提供了网络中设备之间的有效路由。其次,基于长短期记忆深度Q-Network的强化学习(RL)方法降低了物联网设备的能耗。这种混合方法利用每种技术的优势来解决节能路由的不同方面。ACO和AE有助于有效的路由决策,而LSTM DQN优化了能耗,从而产生了一个全面的解决方案。最后,将GELSDQN-ACO方法与RNN-LSTM、DPC-DBN、LSTM-DQN等方法进行了比较。此外,我们批判性地分析绿色物联网并进行实施和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Grid Computing
Journal of Grid Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
8.70
自引率
9.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures. Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信