Yuting Zhong, Zesheng Qin, Abdulmajeed Alqhatani, Ahmed Sayed M. Metwally, Ashit Kumar Dutta, Joel J. P. C. Rodrigues
{"title":"Sustainable Environmental Design Using Green IOT with Hybrid Deep Learning and Building Algorithm for Smart City","authors":"Yuting Zhong, Zesheng Qin, Abdulmajeed Alqhatani, Ahmed Sayed M. Metwally, Ashit Kumar Dutta, Joel J. P. C. Rodrigues","doi":"10.1007/s10723-023-09704-8","DOIUrl":null,"url":null,"abstract":"<p>Smart cities and urbanization use enormous IoT devices to transfer data for analysis and information processing. These IoT can relate to billions of devices and transfer essential data from their surroundings. There is a massive need for energy because of the tremendous data exchange between billions of gadgets. Green IoT aims to make the environment a better place while lowering the power usage of IoT devices. In this work, a hybrid deep learning method called \"Green energy-efficient routing (GEER) with long short-term memory deep Q-Network is used to minimize the energy consumption of devices. Initially, a GEER with Ant Colony Optimization (ACO) and AutoEncoder (AE) provides efficient routing between devices in the network. Next, the long short-term memory deep Q-Network based Reinforcement Learning (RL) method reduces the energy consumption of IoT devices. This hybrid approach leverages the strengths of each technique to address different aspects of energy-efficient routing. ACO and AE contribute to efficient routing decisions, while LSTM DQN optimizes energy consumption, resulting in a well-rounded solution. Finally, the proposed GELSDQN-ACO method is compared with previous methods such as RNN-LSTM, DPC-DBN, and LSTM-DQN. Moreover, we critically analyze the green IoT and perform implementation and evaluation.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"10 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09704-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart cities and urbanization use enormous IoT devices to transfer data for analysis and information processing. These IoT can relate to billions of devices and transfer essential data from their surroundings. There is a massive need for energy because of the tremendous data exchange between billions of gadgets. Green IoT aims to make the environment a better place while lowering the power usage of IoT devices. In this work, a hybrid deep learning method called "Green energy-efficient routing (GEER) with long short-term memory deep Q-Network is used to minimize the energy consumption of devices. Initially, a GEER with Ant Colony Optimization (ACO) and AutoEncoder (AE) provides efficient routing between devices in the network. Next, the long short-term memory deep Q-Network based Reinforcement Learning (RL) method reduces the energy consumption of IoT devices. This hybrid approach leverages the strengths of each technique to address different aspects of energy-efficient routing. ACO and AE contribute to efficient routing decisions, while LSTM DQN optimizes energy consumption, resulting in a well-rounded solution. Finally, the proposed GELSDQN-ACO method is compared with previous methods such as RNN-LSTM, DPC-DBN, and LSTM-DQN. Moreover, we critically analyze the green IoT and perform implementation and evaluation.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.