Secured SDN Based Task Scheduling in Edge Computing for Smart City Health Monitoring Operation Management System

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shuangshuang Zhang, Yue Tang, Dinghui Wang, Noorliza Karia, Chenguang Wang
{"title":"Secured SDN Based Task Scheduling in Edge Computing for Smart City Health Monitoring Operation Management System","authors":"Shuangshuang Zhang, Yue Tang, Dinghui Wang, Noorliza Karia, Chenguang Wang","doi":"10.1007/s10723-023-09707-5","DOIUrl":null,"url":null,"abstract":"<p>Health monitoring systems (HMS) with wearable IoT devices are constantly being developed and improved. But most of these gadgets have limited energy and processing power due to resource constraints. Mobile edge computing (MEC) must be used to analyze the HMS information to decrease bandwidth usage and increase reaction times for applications that depend on latency and require intense computation. To achieve these needs while considering emergencies under HMS, this work offers an effective task planning and allocation of resources mechanism in MEC. Utilizing the Software Denied Network (SDN) framework; we provide a priority-aware semi-greedy with genetic algorithm (PSG-GA) method. It prioritizes tasks differently by considering their emergencies, calculated concerning the data collected from a patient’s smart wearable devices. The process can determine whether a job must be completed domestically at the hospital workstations (HW) or in the cloud. The goal is to minimize both the bandwidth cost and the overall task processing time. Existing techniques were compared to the proposed SD-PSGA regarding average latency, job scheduling effectiveness, execution duration, bandwidth consumption, CPU utilization, and power usage. The testing results are encouraging since SD-PSGA can handle emergencies and fulfill the task’s latency-sensitive requirements at a lower bandwidth cost. The accuracy of testing model achieves 97 to 98% for nearly 200 tasks.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"62 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09707-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Health monitoring systems (HMS) with wearable IoT devices are constantly being developed and improved. But most of these gadgets have limited energy and processing power due to resource constraints. Mobile edge computing (MEC) must be used to analyze the HMS information to decrease bandwidth usage and increase reaction times for applications that depend on latency and require intense computation. To achieve these needs while considering emergencies under HMS, this work offers an effective task planning and allocation of resources mechanism in MEC. Utilizing the Software Denied Network (SDN) framework; we provide a priority-aware semi-greedy with genetic algorithm (PSG-GA) method. It prioritizes tasks differently by considering their emergencies, calculated concerning the data collected from a patient’s smart wearable devices. The process can determine whether a job must be completed domestically at the hospital workstations (HW) or in the cloud. The goal is to minimize both the bandwidth cost and the overall task processing time. Existing techniques were compared to the proposed SD-PSGA regarding average latency, job scheduling effectiveness, execution duration, bandwidth consumption, CPU utilization, and power usage. The testing results are encouraging since SD-PSGA can handle emergencies and fulfill the task’s latency-sensitive requirements at a lower bandwidth cost. The accuracy of testing model achieves 97 to 98% for nearly 200 tasks.

基于安全SDN的边缘计算智能城市健康监测运行管理系统任务调度
具有可穿戴物联网设备的健康监测系统(HMS)正在不断开发和改进。但由于资源的限制,大多数这些小工具的能量和处理能力有限。必须使用移动边缘计算(MEC)来分析HMS信息,以减少带宽使用,并增加依赖于延迟和需要大量计算的应用程序的反应时间。为了满足这些需求,同时考虑突发事件,本研究为MEC提供了一种有效的任务规划和资源分配机制。利用软件拒绝网络(SDN)框架提出了一种基于遗传算法(PSG-GA)的优先级感知半贪婪算法。它根据从患者的智能可穿戴设备收集的数据,根据紧急情况计算出不同的任务优先级。该流程可以确定工作是必须在医院工作站(HW)内部完成还是必须在云中完成。目标是最小化带宽成本和总体任务处理时间。将现有技术与建议的SD-PSGA在平均延迟、作业调度有效性、执行持续时间、带宽消耗、CPU利用率和功耗方面进行了比较。测试结果令人鼓舞,因为SD-PSGA可以处理紧急情况,并以较低的带宽成本满足任务的延迟敏感需求。在近200个测试任务中,测试模型的准确率达到97 ~ 98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Grid Computing
Journal of Grid Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
8.70
自引率
9.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures. Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信