{"title":"Contact $(+1)$-surgeries on rational homology $3$-spheres","authors":"Fan Ding, Youlin Li, Zhongtao Wu","doi":"10.4310/jsg.2022.v20.n5.a2","DOIUrl":null,"url":null,"abstract":"In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology $3$-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(\\pm 1)$-surgeries along Legendrian links in the standard contact $3$-sphere. We also obtain a sufficient condition for contact $(+1)$-surgeries along Legendrian twocomponent links in the standard contact $3$-sphere to be overtwisted via their front projections.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n5.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology $3$-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(\pm 1)$-surgeries along Legendrian links in the standard contact $3$-sphere. We also obtain a sufficient condition for contact $(+1)$-surgeries along Legendrian twocomponent links in the standard contact $3$-sphere to be overtwisted via their front projections.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.