Contact $(+1)$-surgeries on rational homology $3$-spheres

IF 0.6 3区 数学 Q3 MATHEMATICS
Fan Ding, Youlin Li, Zhongtao Wu
{"title":"Contact $(+1)$-surgeries on rational homology $3$-spheres","authors":"Fan Ding, Youlin Li, Zhongtao Wu","doi":"10.4310/jsg.2022.v20.n5.a2","DOIUrl":null,"url":null,"abstract":"In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology $3$-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(\\pm 1)$-surgeries along Legendrian links in the standard contact $3$-sphere. We also obtain a sufficient condition for contact $(+1)$-surgeries along Legendrian twocomponent links in the standard contact $3$-sphere to be overtwisted via their front projections.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n5.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology $3$-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(\pm 1)$-surgeries along Legendrian links in the standard contact $3$-sphere. We also obtain a sufficient condition for contact $(+1)$-surgeries along Legendrian twocomponent links in the standard contact $3$-sphere to be overtwisted via their front projections.
接触$(+1)$-有理同调$3$-球面上的手术
本文给出了在接触有理同调球面上沿Legendrian结的接触$(+1)$-整形具有消失的接触不变量或超扭的充分条件。它们可以应用于研究接触$(\pm 1)$-在标准接触$3$-球面上沿Legendrian连杆的手术。我们还得到了在标准接触球面上沿Legendrian双分量连杆的接触$(+1)$-手术通过其前投影被扭转的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信