Multiplicity of Solutions for A Semilinear Elliptic Problem Via Generalized Nonlinear Rayleigh Quotient

M. L. M. Carvalho, Edcarlos D. Silva, C. Goulart, M. L. Silva
{"title":"Multiplicity of Solutions for A Semilinear Elliptic Problem Via Generalized Nonlinear Rayleigh Quotient","authors":"M. L. M. Carvalho, Edcarlos D. Silva, C. Goulart, M. L. Silva","doi":"10.1007/s00574-023-00375-3","DOIUrl":null,"url":null,"abstract":"<p>It is established existence and multiplicity of solutions for semilinear elliptic problems defined in the whole space <span>\\(\\mathbb {R}^N\\)</span> considering subcritical nonlinearities with some parameters. Here we emphasize that our nonlinearities can be sign-changing functions. The main difficulty is proving the existence of nontrivial solutions by using the Nehari method, taking into account that the Lagrange multipliers theorem cannot be directly applied in our setting. In fact, we consider the case where the fibering map admits inflection points. In other words, we consider the case where the Nehari set admits degenerate critical points. Hence our main contribution is to consider a huge class of semilinear elliptic problems where the standard Nehari method cannot be applied. Using some fine estimates and recovering some compactness results together with the nonlinear Rayleigh quotient, we prove that our main problem admits at least three nontrivial solutions depending on the parameters.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"222 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-023-00375-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is established existence and multiplicity of solutions for semilinear elliptic problems defined in the whole space \(\mathbb {R}^N\) considering subcritical nonlinearities with some parameters. Here we emphasize that our nonlinearities can be sign-changing functions. The main difficulty is proving the existence of nontrivial solutions by using the Nehari method, taking into account that the Lagrange multipliers theorem cannot be directly applied in our setting. In fact, we consider the case where the fibering map admits inflection points. In other words, we consider the case where the Nehari set admits degenerate critical points. Hence our main contribution is to consider a huge class of semilinear elliptic problems where the standard Nehari method cannot be applied. Using some fine estimates and recovering some compactness results together with the nonlinear Rayleigh quotient, we prove that our main problem admits at least three nontrivial solutions depending on the parameters.

Abstract Image

一类半线性椭圆型问题广义非线性瑞利商解的多重性
建立了在整个空间上定义的半线性椭圆型问题解的存在性和多重性 \(\mathbb {R}^N\) 考虑带有某些参数的亚临界非线性。这里我们强调非线性函数可以是改变符号的函数。考虑到拉格朗日乘子定理不能直接应用于我们的情况,主要的困难是用Nehari方法证明非平凡解的存在性。事实上,我们考虑的情况下,纤维图承认拐点。换句话说,我们考虑Nehari集允许退化临界点的情况。因此,我们的主要贡献是考虑了一类不能应用标准Nehari方法的半线性椭圆问题。利用一些精细估计和恢复一些紧性结果,结合非线性瑞利商,证明了我们的主要问题至少有三个非平凡解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信