Matrix autoregressive models: generalization and Bayesian estimation

Alessandro Celani, Paolo Pagnottoni
{"title":"Matrix autoregressive models: generalization and Bayesian estimation","authors":"Alessandro Celani, Paolo Pagnottoni","doi":"10.1515/snde-2022-0093","DOIUrl":null,"url":null,"abstract":"The issue of modelling observations generated in matrix form over time is key in economics, finance and many domains of application. While it is common to model vectors of observations through standard vector time series analysis, original matrix-valued data often reflect different types of structures of time series observations which can be further exploited to model interdependencies. In this paper, we propose a novel matrix autoregressive model in a bilinear form which, while leading to a substantial dimensionality reduction and enhanced interpretability: (a) allows responses and potential covariates of interest to have different dimensions; (b) provides a suitable estimation procedure for matrix autoregression with lag structure; (c) facilitates the introduction of Bayesian estimators. We propose maximum likelihood and Bayesian estimation with Independent-Normal prior formulation, and study the theoretical properties of the estimators through simulated and real examples.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"40 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The issue of modelling observations generated in matrix form over time is key in economics, finance and many domains of application. While it is common to model vectors of observations through standard vector time series analysis, original matrix-valued data often reflect different types of structures of time series observations which can be further exploited to model interdependencies. In this paper, we propose a novel matrix autoregressive model in a bilinear form which, while leading to a substantial dimensionality reduction and enhanced interpretability: (a) allows responses and potential covariates of interest to have different dimensions; (b) provides a suitable estimation procedure for matrix autoregression with lag structure; (c) facilitates the introduction of Bayesian estimators. We propose maximum likelihood and Bayesian estimation with Independent-Normal prior formulation, and study the theoretical properties of the estimators through simulated and real examples.
矩阵自回归模型:泛化与贝叶斯估计
随着时间的推移,以矩阵形式产生的观察结果的建模问题是经济、金融和许多应用领域的关键。虽然通常通过标准向量时间序列分析对观测向量进行建模,但原始矩阵值数据通常反映了不同类型的时间序列观测结构,可以进一步利用这些结构对相互依赖性进行建模。在本文中,我们提出了一种新的双线性矩阵自回归模型,该模型在导致大量降维和增强可解释性的同时:(a)允许响应和潜在的感兴趣的协变量具有不同的维度;(b)为具有滞后结构的矩阵自回归提供了一种合适的估计方法;(c)便于引入贝叶斯估计量。提出了具有独立正态先验公式的极大似然估计和贝叶斯估计,并通过模拟和实际实例研究了估计器的理论性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信