State price density estimation with an application to the recovery theorem

Anthony Sanford
{"title":"State price density estimation with an application to the recovery theorem","authors":"Anthony Sanford","doi":"10.1515/snde-2018-0090","DOIUrl":null,"url":null,"abstract":"Abstract This article introduces a model to estimate the risk-neutral density of stock prices derived from option prices. To estimate a complete risk-neutral density, current estimation techniques use a single mathematical model to interpolate option prices on two dimensions: strike price and time-to-maturity. Instead, this model uses B-splines with at-the-money knots for the strike price interpolation and a mixed lognormal function that depends on the option expiration horizon for the time-to-maturity interpolation. The results of this “hybrid” methodology are significantly better than other risk-neutral density extrapolation methods when applied to the recovery theorem.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"204 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2018-0090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article introduces a model to estimate the risk-neutral density of stock prices derived from option prices. To estimate a complete risk-neutral density, current estimation techniques use a single mathematical model to interpolate option prices on two dimensions: strike price and time-to-maturity. Instead, this model uses B-splines with at-the-money knots for the strike price interpolation and a mixed lognormal function that depends on the option expiration horizon for the time-to-maturity interpolation. The results of this “hybrid” methodology are significantly better than other risk-neutral density extrapolation methods when applied to the recovery theorem.
状态价格密度估计及其在恢复定理中的应用
摘要本文引入了一个由期权价格推导出的股票价格的风险中性密度估计模型。为了估计一个完全的风险中性密度,目前的估计技术使用一个单一的数学模型在两个维度上插值期权价格:执行价格和到期时间。相反,该模型使用带有货币结点的b样条曲线来插值执行价格,使用依赖于期权到期期限的混合对数正态函数来插值到期时间。当应用于恢复定理时,这种“混合”方法的结果明显优于其他风险中性密度外推方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信