Andy Davis, Ben Kamark, Nathan Sims, Martin Roth, John Mocko
{"title":"Past, Present, and Future Anatomy of an Oil Brine Plume Remediation near Poplar, Montana: A Case Study","authors":"Andy Davis, Ben Kamark, Nathan Sims, Martin Roth, John Mocko","doi":"10.1111/gwmr.12624","DOIUrl":null,"url":null,"abstract":"<p>The Biere #1-22 oil production well near Poplar, Montana leaked brine and light nonaqueous phase liquid (LNAPL) to the shallow alluvial aquifer for several years before final closure in 2002. Since 2008, 2.5 billion L of brine have been removed (~90% of the original Cl mass). However, Cl will not reach the original background levels due to the reservoir of solutes entrained in the Bearpaw bedrock remnant from the lateral dense aqueous phase liquid flow across the alluvial/bedrock interface. After removal of ~100,000 L of product since 2006, residual LNAPL is now confined to 2.2 ha (5.5 acres) a decrease from the original 2.7 ha (6.6 acres) areal extent by 17%. The initial ~7.5 m thick product in 2002 is stable at a maximum of ~1 m. However, LNAPL has infiltrated into fine-grained clay/silt units forming a smear zone in lenses 10 to 20 m bgs. Ongoing remediation has successfully mitigated benzene groundwater impacts over the last 14 years, with the benzene plume area having decreased by >99% (at the 5 μg/L) level from the maximum ~140 ha in 2002. This appears to be the first study evaluating the challenges to remediate a mixed LNAPL/dissolved organic/inorganic plume. Based on the mass removal to date, the asymptotic trends in solute concentrations, unpotable background groundwater quality, absence of a source/receptor pathway, lack of beneficial groundwater use, duration of mitigation with no obvious future accrual in benefit and the availability of institutional controls, it seems that the remedial strategies employed since 2006 have met their cost/benefit goals.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwmr.12624","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Biere #1-22 oil production well near Poplar, Montana leaked brine and light nonaqueous phase liquid (LNAPL) to the shallow alluvial aquifer for several years before final closure in 2002. Since 2008, 2.5 billion L of brine have been removed (~90% of the original Cl mass). However, Cl will not reach the original background levels due to the reservoir of solutes entrained in the Bearpaw bedrock remnant from the lateral dense aqueous phase liquid flow across the alluvial/bedrock interface. After removal of ~100,000 L of product since 2006, residual LNAPL is now confined to 2.2 ha (5.5 acres) a decrease from the original 2.7 ha (6.6 acres) areal extent by 17%. The initial ~7.5 m thick product in 2002 is stable at a maximum of ~1 m. However, LNAPL has infiltrated into fine-grained clay/silt units forming a smear zone in lenses 10 to 20 m bgs. Ongoing remediation has successfully mitigated benzene groundwater impacts over the last 14 years, with the benzene plume area having decreased by >99% (at the 5 μg/L) level from the maximum ~140 ha in 2002. This appears to be the first study evaluating the challenges to remediate a mixed LNAPL/dissolved organic/inorganic plume. Based on the mass removal to date, the asymptotic trends in solute concentrations, unpotable background groundwater quality, absence of a source/receptor pathway, lack of beneficial groundwater use, duration of mitigation with no obvious future accrual in benefit and the availability of institutional controls, it seems that the remedial strategies employed since 2006 have met their cost/benefit goals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.