Facile and Sensitive Acetylene Black-Based Electrochemical Sensor for the Detection of Imatinib

IF 1.5 4区 化学 Q3 CHEMISTRY, ANALYTICAL
Shun Li, Qingwu Tian, Xuanming Xu, Chao Xuan, Xiaomin Yang, Shukai Sun, Tingting Zhou
{"title":"Facile and Sensitive Acetylene Black-Based Electrochemical Sensor for the Detection of Imatinib","authors":"Shun Li, Qingwu Tian, Xuanming Xu, Chao Xuan, Xiaomin Yang, Shukai Sun, Tingting Zhou","doi":"10.1155/2023/3228470","DOIUrl":null,"url":null,"abstract":"A facile and sensitive electrochemical sensor for determining imatinib (IMA) was constructed by modifying a glassy carbon electrode (GCE) with a nanocarbon material, acetylene black (AB). The electrochemical behavior of IMA on the prepared GCE/AB was studied using electrochemical techniques, namely, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy. The direct determination of IMA by the GCE/AB sensor was accomplished using DPV under optimized conditions. The method verification showed that the oxidation peak current was proportional to the concentrations of IMA in the linear ranges of 0.01–0.5 and 0.5–4 <i>μ</i>M, with correlation coefficients of 0.9856 and 0.9946, respectively. The limit of detection of the GCE/AB sensor was 0.15 nM. Moreover, the GCE/AB sensor showed good precision and accuracy. Finally, the GCE/AB sensor was successfully applied to determine IMA in human serum samples, and the recoveries were satisfactory.","PeriodicalId":13888,"journal":{"name":"International Journal of Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/3228470","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A facile and sensitive electrochemical sensor for determining imatinib (IMA) was constructed by modifying a glassy carbon electrode (GCE) with a nanocarbon material, acetylene black (AB). The electrochemical behavior of IMA on the prepared GCE/AB was studied using electrochemical techniques, namely, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy. The direct determination of IMA by the GCE/AB sensor was accomplished using DPV under optimized conditions. The method verification showed that the oxidation peak current was proportional to the concentrations of IMA in the linear ranges of 0.01–0.5 and 0.5–4 μM, with correlation coefficients of 0.9856 and 0.9946, respectively. The limit of detection of the GCE/AB sensor was 0.15 nM. Moreover, the GCE/AB sensor showed good precision and accuracy. Finally, the GCE/AB sensor was successfully applied to determine IMA in human serum samples, and the recoveries were satisfactory.
简便灵敏的乙炔黑基电化学传感器检测伊马替尼
采用纳米碳材料乙炔黑(AB)修饰玻碳电极(GCE),构建了一种简便灵敏的测定伊马替尼(IMA)的电化学传感器。采用差分脉冲伏安法(DPV)和电化学阻抗谱技术研究了IMA在制备的GCE/AB上的电化学行为。在优化条件下,采用DPV法实现了GCE/AB传感器对IMA的直接测定。方法验证表明,氧化峰电流与IMA浓度在0.01 ~ 0.5 μM和0.5 ~ 4 μM线性范围内成正比,相关系数分别为0.9856和0.9946。GCE/AB传感器的检测限为0.15 nM。GCE/AB传感器具有良好的精度和准确度。最后,GCE/AB传感器成功应用于测定人血清样品中的IMA,回收率令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
117
期刊介绍: International Journal of Analytical Chemistry publishes original research articles that report new experimental results and methods, especially in relation to important analytes, difficult matrices, and topical samples. Investigations may be fundamental, or else related to specific applications; examples being biological, environmental and food testing, and analysis in chemical synthesis and materials processing. As well as original research, the International Journal of Analytical Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信