Lijuan Liu, Fengzhi Wang, Hang Liu, Shunzhi Zhu, Yan Wang
{"title":"HD-Net: A hybrid dynamic spatio-temporal network for traffic flow prediction","authors":"Lijuan Liu, Fengzhi Wang, Hang Liu, Shunzhi Zhu, Yan Wang","doi":"10.1049/itr2.12462","DOIUrl":null,"url":null,"abstract":"<p>Accurately predicting traffic flow is crucial for intelligent transportation systems (ITS). In recent years, many deep learning-based prediction models have been widely applied in traffic flow prediction, and various spatio-temporal networks have been proposed. However, most of the existing models follow a general technical route to extract the spatio-temporal features, which lack the capacity of extracting the important historical information with the high spatial and temporal correlations dynamically and deeply. How to develop a well-performance traffic flow prediction model for a complex transportation network is still facing some challenges. In this paper, a hybrid dynamic spatio-temporal network (HD-Net) for traffic flow prediction is proposed. In HD-Net, the authors first extract the dynamic spatio-temporal features using dynamic graph convolution and bidirectional gate recurrent uni (BiGRU). Subsequently, the authors extract the important features with high spatial and temporal correlations from the obtained dynamic spatio-temporal features using an auto-correlation mechanism from a local perspective, and self-attention mechanism from a global perspective, respectively. Extensive experiments have been conducted on two real-world traffic datasets. The experimental results demonstrate that the proposed HD-Net outperforms the baselines in the field of capturing the dynamic and important spatio-temporal features with high correlations.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12462","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12462","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting traffic flow is crucial for intelligent transportation systems (ITS). In recent years, many deep learning-based prediction models have been widely applied in traffic flow prediction, and various spatio-temporal networks have been proposed. However, most of the existing models follow a general technical route to extract the spatio-temporal features, which lack the capacity of extracting the important historical information with the high spatial and temporal correlations dynamically and deeply. How to develop a well-performance traffic flow prediction model for a complex transportation network is still facing some challenges. In this paper, a hybrid dynamic spatio-temporal network (HD-Net) for traffic flow prediction is proposed. In HD-Net, the authors first extract the dynamic spatio-temporal features using dynamic graph convolution and bidirectional gate recurrent uni (BiGRU). Subsequently, the authors extract the important features with high spatial and temporal correlations from the obtained dynamic spatio-temporal features using an auto-correlation mechanism from a local perspective, and self-attention mechanism from a global perspective, respectively. Extensive experiments have been conducted on two real-world traffic datasets. The experimental results demonstrate that the proposed HD-Net outperforms the baselines in the field of capturing the dynamic and important spatio-temporal features with high correlations.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf