{"title":"Contrastive learning for traffic flow forecasting based on multi graph convolution network","authors":"Kan Guo, Daxin Tian, Yongli Hu, Yanfeng Sun, Zhen (Sean) Qian, Jianshan Zhou, Junbin Gao, Baocai Yin","doi":"10.1049/itr2.12451","DOIUrl":null,"url":null,"abstract":"<p>Contrastive learning is an increasingly important research direction and has attracted considerable attention in the field of computer vision. It can greatly improve the representativeness of image features through data augmentation, unsupervised learning, and pre-trained models. However, in the field of traffic flow forecasting, most graph-based models focus on the construct of spatial–temporal relationships between road segments and ignore the use of temporal data augmentation and pre-trained models, which can improve the representation ability of the forecasting model. Therefore, in this work, contrastive learning are used to expand the distribution of sequence samples and improve the quality and generalization of forecasting models. Based on this, a novel forecasting model called contrastive learning based on multi graph convolution network (CLMGCN) is proposed, which is combined with four components: multi graph convolution network, which learns the spatial–temporal feature of the input traffic data; temporal data augmentation, which obtains the augmentation data of the input traffic data; contrastive learning, which achieves the pre-training phase and improve the quality of output feature of multi graph convolution network; output block, which utilizes the enhanced output feature of multi graph convolution network for predicting the future traffic data. Finally, by the experimental results of four public traffic flow datasets, it can be shown that CLMGCN achieves higher traffic forecasting accuracy with lower model complexity.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12451","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12451","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Contrastive learning is an increasingly important research direction and has attracted considerable attention in the field of computer vision. It can greatly improve the representativeness of image features through data augmentation, unsupervised learning, and pre-trained models. However, in the field of traffic flow forecasting, most graph-based models focus on the construct of spatial–temporal relationships between road segments and ignore the use of temporal data augmentation and pre-trained models, which can improve the representation ability of the forecasting model. Therefore, in this work, contrastive learning are used to expand the distribution of sequence samples and improve the quality and generalization of forecasting models. Based on this, a novel forecasting model called contrastive learning based on multi graph convolution network (CLMGCN) is proposed, which is combined with four components: multi graph convolution network, which learns the spatial–temporal feature of the input traffic data; temporal data augmentation, which obtains the augmentation data of the input traffic data; contrastive learning, which achieves the pre-training phase and improve the quality of output feature of multi graph convolution network; output block, which utilizes the enhanced output feature of multi graph convolution network for predicting the future traffic data. Finally, by the experimental results of four public traffic flow datasets, it can be shown that CLMGCN achieves higher traffic forecasting accuracy with lower model complexity.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf